Putnam 2024 A1

WIM RUITENBURG

Determine all $n \in \mathbb{N}^+$ for which there exist $a, b, c \in \mathbb{N}^+$ satisfying $2a^n + 3b^n = 4c^n$.

First we try to find any solution. When we set n = 1 we get equation 2a + 3b = 4c, for which we can find multiple solution. One suffices, (a, b, c) = (3, 2, 3). So for n = 1 there is a solution.

From now on we may suppose $n \geq 2$, because we settled case n = 1. There are no immediate clear solutions. The presence of coefficients divisible by 2 suggests arithmetic modulo 2. An integer solution (a,b,c) implies that $3b^n \equiv 0 \mod 2$. So b is divisible by 2. There is $b_1 \in \mathbb{N}^+$ such that $b = 2b_1$. Back to the original equation, we have $2a^n + 3 * 2^n b_1^n = 2^2 c^n$, so also

$$a^n + 3 * 2^{n-1}b_1^n = 2c^n.$$

Since $n-1 \ge 1$, this gives $a^n \equiv 0 \mod 2$. So a is divisible by 2. There is $a_1 \in \mathbb{N}^+$ such that $a = 2a_1$. Back to the original equation, we have $2^{n+1}a_1^n + 3 * 2^nb_1^n = 2^2c^n$, so also

$$2^{n-1}a_1^n + 3 * 2^{n-2}b_1^n = c^n.$$

To repeat the case above for a even, but now to have c even, we need that $n-2 \ge 1$. So we temporarily abandon the case n=2 and suppose the stronger $n \ge 3$. This gives $c^n \equiv 0 \mod 2$. There is $c_1 \in \mathbb{N}^+$ such that $c=2c_1$. Back to the original equation, we have $2^{n+1}a_1^n + 3 * 2^nb_1^n = 2^{n+2}c_1^n$, so also

$$2a_1^n + 3b_1^n = 4c_1^n$$
.

Aha, a 'smaller' solution to the original equation! So suppose $n \geq 3$, and assume that there is a solution (a,b,c). We may suppose that value a+b+c is minimal among all solutions for this n, since minimal ones must exist. The above computation shows that all of a, b and c are even, and (a/2,b/2,c/2) is also a solution for this n, with a/2+b/2+c/2< a+b+c. So there is no 'minimal' solution, contradiction. The assumption is false. Thus for all $n \geq 3$ there are no solutions.

We are left with solving case n=2 and equation $2a^2+3b^2=4c^2$. We don't try arithmetic modulo 2 again. Instead, the presence of a 3 suggests arithmetic modulo 3. Since $2 \equiv -1 \mod 3$ and $4 \equiv 1 \mod 3$ we have $-a^2 \equiv c^2 \mod 3$, so also

$$a^2 + c^2 \equiv 0 \mod 3$$
.

Each $x \in \mathbb{N}^+$ equals 0, 1, or 2 modulo 3, so x^2 equals $0^2 \equiv 0 \mod 3$ or $1^2 \equiv 1 \mod 3$ or $2^2 \equiv 1 \mod 3$. So both a^2 and c^2 can at most be 0 or 1 modulo 3. The only combination for which the equation modulo 3 can work is for $a^2 \equiv c^2 \equiv 0 \mod 3$. So a and c are both divisible by 3. There are $a_1, c_1 \in \mathbb{N}^+$ such that $a = 3a_1$ and $c = 3c_1$. Back to the original equation, we have $2*3^2a_1^2+3b^2=4*3^2c_1^2$, so also

$$2 * 3a_1^2 + b^2 = 4 * 3c_1^2.$$

This gives $b^2 \equiv 0 \mod 3$. So b is divisible by 3. There is $b_1 \in \mathbb{N}^+$ such that $b = 3b_1$. Back to the original equation, we have $2 * 3^2 a_1^2 + 3^3 b_1^2 = 4 * 3^2 c_1^2$, so also

$$2a_1^2 + 3b_1^2 = 4c_1^2$$
.

Aha, a 'smaller' solution to the original equation! So suppose n=2, and assume that there is a solution (a,b,c). We may suppose that value a+b+c is minimal among all solutions since minimal ones must exist. The above computation shows that all of a,b and c are divisible by 3, and (a/3,b/3,c/3) is also a solution, with a/3+b/3+c/3 < a+b+c. So there is no 'minimal' solution, contradiction. The assumption is false. Thus for n=2 there are no solutions.