Putnam 2024 B1

WIM RUITENBURG

Given $k, n \in \mathbb{N}^+$, on an $n \times n$ grid we assign a function f(i, j) = i + j - k. Find all pairs (k, n) for which it is possible to have exactly one square in each row and column such that the values f(i, j) in the selected n squares (i, j) are exactly $1, 2, \ldots, n$.

At least three students found solutions, sometimes multiple solutions, for all pairs of form (k, n) = (k, 2k - 1). No solutions were seen for other combinations (k, n). It turns out that the hard part is to show that no solutions exist for all other combinations of (k, n).

We can find a complete solution confirming the intuition of the students, by looking at the problem over a different angle. This is one of those AHA solutions, a flash of insight. We first illustrate the idea of the solution by looking at the example with k=3 and n=5. In the 5×5 picture below we have grid point (1,1) in the bottom left corner, and grid point (5,1) at the bottom right. Since f(k,1)=k+1-k=1, in the picture f(3,1)=1, that is where the letter A appears in the bottom row. All letters A appear exactly at the points (i,j) where f(i,j)=1. Similarly, f(i,j)=2 wherever there is a B, f(i,j)=3 for each C, f(i,j)=4 for D, and f(i,j)=5 for E. All other fields are left blank, since we only pick one square from each of the anti-diagonals A through E. Additionally, the n=5 chosen squares must be on different rows and columns. In that way the n chosen squares form the graph of a permutation σ in the usual way, a bijection from the set $\{1,2,\ldots,n\}$ to itself where each chosen (i,j) means $\sigma(i)=j$.

C	D	E		
B	C	D	E	
A	B	C	D	E
	A	B	C	D
		\overline{A}	B	C

Now the magic. We turn the picture counterclockwise one quarter of a circle:

		E	D	C
	E	D	C	B
E	D	C	B	A
D	C	B	A	
C	B	\overline{A}		

For now we concentrate our descriptions on this re-oriented situation. We express matters in terms of n in general, so not only for n=5. The chosen squares remain the graph of a permutation, say τ . The lettered diagonals turn into graphs of partial functions $f_c(i)=i+c$, where the constant c ranges over a list of n consecutive integers. There are integers k_1,k_2,\ldots,k_n such that $\tau(i)=i+k_i$. Since the chosen squares are from distinct consecutive parallel diagonals, the set $\{k_1,k_2,\ldots,k_n\}$ equals a collection of n consecutive integers. The values $\tau(i)$ of permutation τ range over all integers of set $\{1,2,\ldots,n\}$, so $\sum_{i=1}^n \tau(i) = \sum_{i=1}^n i$ (we don't need to know that this sum equals n(n+1)/2). Substitute: $\sum_{i=1}^n i + \sum_{i=1}^n k_i = \sum_{i=1}^n i$, so $\sum_{i=1}^n k_i = 0$. The only way by which the sum of consecutive integers sums to 0 is when, up to reordering, the list

$$k_1, k_2, \ldots, k_n$$
 equals $(-m), (-m+1), \ldots, (m-1), m$ for some $m \ge 0$.

So n = 2m + 1. It is time to rotate the picture back one quarter of a circle clockwise. Before doing so, we prepare the conversion from m to k as follows. The bottom diagonal line of partial function $f_{-m}(x) = x - m$, illustrated by the letters A, reaches the right most column at position (n, n - m) = (2m + 1, m + 1). When we rotate a quarter circle

clockwise, position (2m+1, m+1) becomes (m+1, 1), exactly where f(k, 1) = 1. So m+1=k, and n=2k-1 for some k>0. Now rotate back.

The grid must have size (k, n) = (k, 2k - 1). In these situations, multiple students found multiple solutions. We give two, although one suffices.

On solution consists of choosing squares $(1,k),(2,k+1),\ldots,(k,2k-1)$ plus $(k+1,1),(k+2,2),\ldots,(2k-1,k-1)$. The first list of k chosen squares covers all cases where $f(i,j)\equiv 1 \bmod 2$. The second list of k-1 chosen squares covers all cases where $f(i,j)\equiv 0 \bmod 2$.

Another solution consists of choosing squares $(1, 2k-1), (2, 2k-3), \ldots, (k, 1)$ plus $(k+1, 2k-2), (k+2, 2k-4), \ldots (2k-1, 2)$. The first list of k chosen squares covers all cases where f(i, 2k-2i+1) = k-i+1 ranges over values k down to 1. The second list of k-1 chosen squares covers all cases where f(i, 4k-2i) = 3k-i ranges over values 2k-1 down to k+1.

We illustrate the two solutions for (k, 2k - 1) = (4, 7):

D	E	F				
C	D		F	G		
B		D	E	F	G	
	B	C	D	E	F	G
	A	B	C	D	E	
		A	B	C		E
			\overline{A}		\overline{C}	D

	E	F	G			
C	D	E	F			
B		D	E	F	G	
A	B	C	D	E		G
	A	$ \bullet $	C	D	E	F
		A	B	C	D	
				B	C	D