
Complex exponentiation

From calculus over the reals R we know that the standard exponential function equals the limit
of the power series function
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This equation holds for all real numbers x. The basic properties about convergence of power series
also work for complex numbers. One easily shows that the complex number power series
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converges to a (complex number) limit, for all complex values for z. We define the expression ez

as name for this limit. So
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The complex number function ez still satisfies many nice properties that we know, like
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Here is an almost magical fact: One can show that for all real numbers a and b,
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So, in particular,

cos(b+ d) + i sin(b+ d) = e
i(b+d) =

e
ib
e
id = (cos(b) + i sin(b))(cos(d) + i sin(d)) =

(cos(b) cos(d)− sin(b) sin(d)) + i(cos(b) sin(d) + sin(b) cos(d))

and presto, out come the trigonometric formulas

cos(b+ d) = cos(b) cos(d)− sin(b) sin(d)
sin(b+ d) = cos(b) sin(d) + sin(b) cos(d)

Finally, let us define complex differentiation in steps. First define
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Extend this definition to all power series in the natural way, through sums, constant multiples,
and uniform limits. The resulting complex derivative still satisfies the product rule and the chain
rule. We leave it as an exercise to show through term by term differentiation of the power series
above, that
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for all constants λ.
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