Below, we use boldface letters to represent vectors. For example, 0 is the number zero, and $\mathbf{0}$ is the vector of length zero.

What is a norm on a vector space?

A norm on a vector space V is a function from V to the real numbers \mathbb{R} , usually written like $\|\mathbf{v}\|$, satisfying

A1
$$\|\mathbf{v}\| \ge 0$$

A2
$$\|\mathbf{v}\| = 0$$
 exactly when $\mathbf{v} = \mathbf{0}$

A3
$$||r\mathbf{v}|| = |r| ||\mathbf{v}||$$

A4
$$\|\mathbf{v} + \mathbf{w}\| < \|\mathbf{v}\| + \|\mathbf{w}\|$$
 (triangle inequality)

A norm $\|\mathbf{v}\|$ represents the size, or length, of a vector \mathbf{v} . The 'distance' between two vectors \mathbf{v} and \mathbf{w} is then given by the amount $\|\mathbf{v} - \mathbf{w}\|$.

An example: Let V be a finite dimensional vector space of the form \mathbb{R}^n , for some positive integer n, and let $\mathbf{x} = (x_1, x_2, \dots, x_n)$ be a vector. Define $\|\mathbf{x}\|_a$ by

$$\|\mathbf{x}\|_a = |x_1| + |x_2| + \ldots + |x_n|$$

One easily verifies that this defines a norm on $V = \mathbb{R}^n$. The distance $\|\mathbf{v} - \mathbf{w}\|_a$ corresponds with the taxidriver distance, where the shortest path must be built from straight line segments parallel or perpendicular to all major axes.

Another example: Let V be a finite dimensional vector space of the form \mathbb{R}^n , for some positive integer n, and let $\mathbf{x} = (x_1, x_2, \dots, x_n)$ be a vector. Define $\|\mathbf{x}\|_e$ by

$$\|\mathbf{x}\|_e = \sqrt{x_1^2 + x_2^2 + \ldots + x_n^2}$$

The function $\|\mathbf{x}\|_e$ satisfies all the required axioms of a norm, but it is not immediately obvious how to prove the triangle inequality. Its standard proof involves the so-called Cauchy-Schwarz inequality. The distance $\|\mathbf{v} - \mathbf{w}\|_e$ corresponds with the distance as the crow flies.

From the two examples above we see that a vector space can have different norms. Fortunately, on $V = \mathbb{R}^n$ they can not be too different. For example, the two norms above are bound by

$$\|\mathbf{v}\|_a \leq \sqrt{n} \|\mathbf{v}\|_e$$

and

$$\|\mathbf{v}\|_e \leq \|\mathbf{v}\|_a$$