- A take-home homework problem.
- Due date: Wednesday 3 December 2014.

• Purpose: Learn the enormous value of abstraction and proof. When checking the *proofs* in introductory linear algebra, many results remain valid when we generalize from the reals \mathbb{R} or complex numbers \mathbb{C} to arbitrary fields, like finite fields \mathbb{Z}_5 or \mathbb{Z}_{17} , or fields like $\mathbb{Q}(x)$.

• Hint towards a solution of the problem: Almost-copy a proof from any decent introductory linear algebra book.

• **Problem**: Let a, b, c, d be elements of a field F. Prove that the following are equivalent:

- 1. For all $p, q \in F$ there are unique $x, y \in F$ so that $\begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} p \\ q \end{bmatrix}$.
- 2. $ad bc \neq 0$.