MATH 2ddd formalization exercises

WIM RUITENBURG 11 October 2017

In each of the following exercises you are given a structure and a list of atomic formulas. Then you are given a mathematical statement which you are asked to write in the formal language given by these atomic formulas. In some cases you may be asked to put this formal statement in a special form.

Recall the logical symbols \wedge for and, \vee for or, \rightarrow for implies, \neg for not, \top for true, \bot for false, \forall for for all, and \exists for there exists. Below we always include atom = for equality.

- F1. We are given the domain of integers \mathbb{Z} , and our language has atoms for equality =, for less-than <, the usual polynomials with plus, minus, and times, and constants $0, 1, 2, 3, \ldots$ And a constant symbol c standing for an integer, you don't know which. Formalize the statement that c is a multiple of 10.
- F2. We are given the domain of integers \mathbb{Z} , and our language has atoms for equality =, for less-than <, the usual polynomials with plus, minus, and times, and constants $0, 1, 2, 3, \ldots$ And a constant symbol c standing for an integer, you don't know which. Formalize the statement that c is not a multiple of 50.
- F3. We are given the domain of integers \mathbb{Z} , and our language has atoms for equality =, for less-than <, the usual polynomials with plus, minus, and times, and constants $0, 1, 2, 3, \ldots$ And a constant symbol c standing for an integer, you don't know which. Formalize the statement that c is a multiple of 10 but not a multiple of 50.
- F4. We are given the domain of integers \mathbb{Z} , and our language has atoms for equality =, for less-than <, the usual polynomials with plus, minus, and times, and constants $0, 1, 2, 3, \ldots$ And constant symbols c, d, and e standing for integers, you don't know which ones. Formalize the statement that c is a multiple of d but not a multiple of e.

Another bunch.

- F5. We are given the domain of integers \mathbb{Z} , and our language has atoms for equality =, for less-than <, the usual polynomials with plus, minus, and times, and constants $0, 1, 2, 3, \ldots$ And a constant symbol c standing for an integer, you don't know which. Formalize the statement that c is not negative. Write a version that does not use the negation symbol \neg .
- F6. We are given the domain of integers \mathbb{Z} , and our language has atoms for equality =, for less-than <, the usual polynomials with plus, minus, and times, and constants $0, 1, 2, 3, \ldots$ And constant symbols c and d standing for integers, you don't know which ones. Formalize the statement that d is positive and c^2 is less than d.
- F7. We are given the domain of integers \mathbb{Z} , and our language has atoms for equality =, for less-than <, the usual polynomials with plus, minus, and times, and constants $0, 1, 2, 3, \ldots$ And constant symbols c and d standing for integers, you don't know which ones. Formalize the statement that d is positive and c is the largest number such that c^2 is less than d.

A bunch over a different structure.

- F8. We are given the domain of rationals \mathbb{Q} , and our language has atoms for equality =, for less-than <, the usual polynomials with plus, minus, and times, and constants $0, 1, 2, 3, \ldots$ And a function symbol f standing for a function from \mathbb{Q} to \mathbb{Q} . Formalize the statement that f is a one-to-one function (injective).
- F9. We are given the domain of rationals \mathbb{Q} , and our language has atoms for equality =, for less-than <, the usual polynomials with plus, minus, and times, and constants $0, 1, 2, 3, \ldots$ And a function symbol f standing for a function from \mathbb{Q} to \mathbb{Q} . Formalize the statement that f is an onto function (surjective).
- F10. We are given the domain of rationals \mathbb{Q} , and our language has atoms for equality =, for less-than <, the usual polynomials with plus, minus, and times, and constants $0, 1, 2, 3, \ldots$ And a function symbol f standing for a function from \mathbb{Q} to \mathbb{Q} . Formalize the statement that f is a one-to-one and onto function (bijective).
- F11. We are given the domain of rationals \mathbb{Q} , and our language has atoms for equality =, for less-than <, the usual polynomials with plus, minus, and times, and constants $0, 1, 2, 3, \ldots$ And a function symbol f standing for a function from \mathbb{Q} to \mathbb{Q} . Formalize the statement that f is a strictly increasing function.
- F12. We are given the domain of rationals \mathbb{Q} , and our language has atoms for equality =, for less-than <, the usual polynomials with plus, minus, and times, and constants $0, 1, 2, 3, \ldots$ And a function symbol f standing for a function from \mathbb{Q} to \mathbb{Q} . Formalize the statement that f is a strictly increasing function which is neither injective nor surjective.
- F13. We are given the domain of rationals \mathbb{Q} , and our language has atoms for equality =, for less-than <, the usual polynomials with plus, minus, and times, and constants $0, 1, 2, 3, \ldots$ And a function symbol f standing for a function from \mathbb{Q} to \mathbb{Q} . Formalize the statement that f is a strictly increasing function which is not bijective.

Yet another bunch.

- F14. We are given the domain of rationals \mathbb{Q} , and our language has atoms for equality =, for less-than <, the usual polynomials with plus, minus, and times, and constants $0, 1, 2, 3, \ldots$ Formalize the statement that all positive numbers are a sum of 4 squares.
- F15. We are given the domain of rationals \mathbb{Q} , and our language has atoms for equality =, for less-than <, the usual polynomials with plus, minus, and times, and constants $0, 1, 2, 3, \ldots$ Formalize the statement that there is a positive number which is not a sum of 3 squares.
- F16. We are given the domain of rationals \mathbb{Q} , and our language has atoms for equality =, for less-than <, the usual polynomials with plus, minus, and times, and constants $0, 1, 2, 3, \ldots$ Formalize the statement that there is a positive number which is a sum of 4 squares but not a sum of 3 squares.

MATH 2ddd proof exercises

WIM RUITENBURG 30 November 2017

- P1. Let $f: A \to B$ and $g: B \to C$ be one-to-one functions. Prove that $g \circ f: A \to C$ is also one-to-one.
- P2. Let $f : A \to B$ and $g : B \to C$ be functions such that $g \circ f : A \to C$ is one-to-one. Prove that f is also one-to-one.
- P3. Give an example of functions $f : A \to B$ and $g : B \to C$ such that $g \circ f : A \to C$ is one-to-one, but g is not one-to-one.
- P4. On finite set $A = \{n \in \mathbb{Z}^+ : n \leq 100\}$ define binary relation R by $(a, b) \in R$ exactly when a divides b. Prove that R is a partial order (see book, page 302).
- P5. On finite set $A = \{n \in \mathbb{Z}^+ : n \leq 100\}$ define binary relation R by $(a, b) \in R$ exactly when a b is divisible by 7 in \mathbb{Z} . Prove that R is an equivalence relation (see book, page 320 Theorem 3).