A Combinatorial Construction used in Number Theory

WIM RUITENBURG

These are notes useful for our Number Theory class.

1 Power Series as an Example

We precede the intended topic by first making a comparison. Recall that we can compute with power series

$$f = a_0 + a_1 X + a_2 X^2 + a_3 X^3 + \ldots = \sum_{n>0} a_n X^n$$

over the real numbers in the expected way. We add or subtract power series coefficient by coefficient. So

$$(a_0 + a_1 X + a_2 X^2 + \ldots) + (b_0 + b_1 X + b_2 X^2 + \ldots) = = (a_0 + b_0) + (a_1 + b_1) X + (a_2 + b_2) X^2 + \ldots = = \sum_{n \ge 0} (a_n + b_n) X^n,$$

and

$$-(a_0 + a_1X + a_2X^2 + \ldots) =$$

= $(-a_0) + (-a_1)X + (-a_2)X^2 + \ldots =$
= $\sum_{n>0} (-a_n)X^n.$

We multiply power series by the usual 'convolution' product

$$(a_0 + a_1 X + a_2 X^2 + \dots)(b_0 + b_1 X + b_2 X^2 + \dots) =$$

= $(a_0 b_0) + (a_1 b_0 + a_0 b_1) X + (a_2 b_0 + a_1 b_1 + a_0 b_2) X^2 + \dots =$
= $\sum_{n>0} (\sum_{j+k=n} a_j b_k) X^n.$

We can also divide, finding the (multiplicative) inverse of a power series. Recall that the inverse of a number a is that number b for which both ab = 1 and ba = 1. We often write a^{-1} for this unique b. Recall that for real numbers \mathbb{R} all nonzero numbers have a (multiplicative) inverse. For example, 0.5 is the inverse of 2, and therefore also written as 0.5 = 1/2 or as $0.5 = \frac{1}{2}$ or as $0.5 = 2^{-1}$. However, the number 0 has no such inverse. Among power series over \mathbb{R} we find that many have multiplicative inverses, though not all. For example, 1 - X is invertible with inverse $\sum_{n>0} X^n$, since

$$(1-X)(1+X+X^2+X^3+\ldots) = 1,$$

while X has no inverse. In fact, more generally, a power series $a_0+a_1X+a_2X^2+a_3X^3+\ldots$ is invertible exactly when a_0 is invertible (try to prove this!). Thus $(1-X)^{-1}$ exists, while X^{-1} does not exist, among the power series.

There is no relevant information lost when we write power series as infinite sequences of numbers, like

$$f = (a_0, a_1, a_2, a_3, \ldots) = (a_n)_{n \ge 0} \quad \text{and} \\ g = (b_0, b_1, b_2, b_3, \ldots) = (b_n)_{n > 0}.$$

So

$$f + g = (a_0 + b_0, a_1 + b_1, a_2 + b_2, \ldots) = (a_n + b_n)_{n \ge 0} \text{ and} fg = (a_0 b_0, a_1 b_0 + a_0 b_1, a_2 b_0 + a_1 b_1 + a_0 b_2, \ldots = (\sum_{j+k=n} a_j b_k)_{n \ge 0}.$$

We have all these familiar nice¹ properties like (fg)h = f(gh) and f(g+h) = fg + fh. For those who remember 'Foundations of Mathematics', f and g are in essence functions from $\mathbb{Z}^{\geq 0}$ to \mathbb{R} or, in other words, elements of $\mathbb{R}^{(\mathbb{Z}^{\geq 0})}$. Sum and product are also defined by

$$(f+g)(n) = f(n) + g(n)$$
 for all $n \ge 0$, and
 $(fg)(n) = \sum_{i+k=n} f(j)g(k)$ for all $n \ge 0$.

We also talk about f and g as sequence f or sequence g. In such cases we usually write

 $(f+g)_n = f_n + g_n$ for all $n \ge 0$, and $(fg)_n = \sum_{j+k=n} f_j g_k$ for all $n \ge 0$.

2 The Dirichlet Product

Given the *example* of power series in Section 1, we now consider a different but similar such nice structure. Let us consider functions from $\mathbb{N} = \mathbb{Z}^{>0}$ to \mathbb{R} or, in other words, elements of $\mathbb{R}^{\mathbb{N}}$. Its elements are written as

$$s = (s_1, s_2, s_3, s_4, \ldots) = (s_n)_{n>0} \quad \text{or} t = (t_1, t_2, t_3, t_4, \ldots) = (t_n)_{n>0}.$$

Note that we do not have an s_0 or a t_0 . We define addition and subtraction as we did before in the power series case. So for example

$$s + t = (s_1 + t_1, s_2 + t_2, s_3 + t_3, \ldots) = (s_n + t_n)_{n > 0}.$$

We define a *new* product, called Dirichlet product or Dirichlet convolution, by

$$s * t = \left(\sum_{de=n} s_d t_e\right)_{n>0},$$

also written

$$s * t = (\sum_{d|n} s_d t_{\frac{n}{d}})_{n>0}.$$

This product has nice properties like

$$s * t = t * s,$$

 $s * (t + u) = s * t + s * u,$ and
 $s * (t * u) = (s * t) * u.$

For this last equation, observe that both sides are equal to

$$s * (t * u) = \left(\sum_{def=n} s_d t_e u_f\right)_{n>0}.$$

Consider the following sequences

 $O = (0, 0, 0, 0, 0, \dots),$ $I = (1, 0, 0, 0, 0, \dots), \text{ and }$ $E = (1, 1, 1, 1, 1, \dots).$

We easily verify that for all s we have

$$\begin{array}{l} s*O=O,\\ s*I=s, \quad \text{and}\\ s*E=(\sum_{de=n}s_d)_{n>0}=(\sum_{d\mid n}s_d)_{n>0}. \end{array}$$

¹Commutative ring properties and more, from abstract algebra.

So O plays a role like the zero number 0 among \mathbb{R} or \mathbb{Z} , and I plays a role like the unity number 1 among \mathbb{R} or \mathbb{Z} . Multiplication by E is of special interest in number theory.

When does a sequence s have a multiplicative inverse, that is, have an element $x = (x_1, x_2, x_3, x_4, \ldots)$ such that s * x = I? Such x may be called $x = s^{-1}$. Given s, to compute x we have to find values x_1, x_2, x_3, \ldots satisfying the system of equations

$$s_{1}x_{1} = 1,$$

$$s_{2}x_{1} + s_{1}x_{2} = 0,$$

$$s_{3}x_{1} + s_{1}x_{3} = 0,$$

$$s_{4}x_{1} + s_{2}x_{2} + s_{1}x_{4} = 0,$$

$$s_{5}x_{1} + s_{1}x_{5} = 0,$$

$$s_{6}x_{1} + s_{3}x_{2} + s_{2}x_{3} + s_{1}x_{6} = 0,$$

$$\dots,$$

$$\sum_{de=n} s_{d}x_{e} = 0,$$

So x_1 exists exactly when s_1 is invertible. Observe that if $x_1, x_2, \ldots, x_{n-1}$ can be found for some n > 1 (so s_1 is invertible), then x_n can also be computed by moving all but the last term to the right of the equation, and divide by s_1 . Thus sequence s is invertible exactly when its term s_1 is invertible.