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These are notes useful for our Number Theory class.

1 Power Series as an Example

We precede the intended topic by first making a comparison. Recall that we can compute
with power series

f = a0 + a1X + a2X
2 + a3X

3 + . . . =
∑

n≥0 anX
n

over the real numbers in the expected way. We add or subtract power series coefficient
by coefficient. So

(a0 + a1X + a2X
2 + . . .) + (b0 + b1X + b2X

2 + . . .) =
= (a0 + b0) + (a1 + b1)X + (a2 + b2)X

2 + . . . =
=

∑
n≥0(an + bn)X

n,

and

−(a0 + a1X + a2X
2 + . . .) =

= (−a0) + (−a1)X + (−a2)X
2 + . . . =

=
∑

n≥0(−an)X
n.

We multiply power series by the usual ‘convolution’ product

(a0 + a1X + a2X
2 + . . .)(b0 + b1X + b2X

2 + . . .) =
= (a0b0) + (a1b0 + a0b1)X + (a2b0 + a1b1 + a0b2)X

2 + . . . =
=

∑
n≥0(

∑
j+k=n ajbk)X

n.

We can also divide, finding the (multiplicative) inverse of a power series. Recall that the
inverse of a number a is that number b for which both ab = 1 and ba = 1. We often
write a−1 for this unique b. Recall that for real numbers R all nonzero numbers have a
(multiplicative) inverse. For example, 0.5 is the inverse of 2, and therefore also written
as 0.5 = 1/2 or as 0.5 = 1

2 or as 0.5 = 2−1. However, the number 0 has no such inverse.
Among power series over R we find that many have multiplicative inverses, though not
all. For example, 1−X is invertible with inverse

∑
n≥0 X

n, since

(1−X)(1 +X +X2 +X3 + . . .) = 1,

whileX has no inverse. In fact, more generally, a power series a0+a1X+a2X
2+a3X

3+. . .
is invertible exactly when a0 is invertible (try to prove this!). Thus (1 − X)−1 exists,
while X−1 does not exist, among the power series.

There is no relevant information lost when we write power series as infinite sequences
of numbers, like

f = (a0, a1, a2, a3, . . .) = (an)n≥0 and
g = (b0, b1, b2, b3, . . .) = (bn)n≥0.

So

f + g = (a0 + b0, a1 + b1, a2 + b2, . . .) = (an + bn)n≥0 and
fg = (a0b0, a1b0 + a0b1, a2b0 + a1b1 + a0b2, . . . = (

∑
j+k=n ajbk)n≥0.
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We have all these familiar nice1 properties like (fg)h = f(gh) and f(g + h) = fg + fh.
For those who remember ‘Foundations of Mathematics’, f and g are in essence functions

from Z

≥0 to R or, in other words, elements of R(Z≥0). Sum and product are also defined
by

(f + g)(n) = f(n) + g(n) for all n ≥ 0, and
(fg)(n) =

∑
j+k=n f(j)g(k) for all n ≥ 0.

We also talk about f and g as sequence f or sequence g. In such cases we usually write

(f + g)n = fn + gn for all n ≥ 0, and
(fg)n =

∑
j+k=n fjgk for all n ≥ 0.

2 The Dirichlet Product

Given the example of power series in Section 1, we now consider a different but similar
such nice structure. Let us consider functions from N = Z

>0 to R or, in other words,
elements of RN. Its elements are written as

s = (s1, s2, s3, s4, . . .) = (sn)n>0 or
t = (t1, t2, t3, t4, . . .) = (tn)n>0.

Note that we do not have an s0 or a t0. We define addition and subtraction as we did
before in the power series case. So for example

s+ t = (s1 + t1, s2 + t2, s3 + t3, . . .) = (sn + tn)n>0.

We define a new product, called Dirichlet product or Dirichlet convolution, by

s ∗ t = (
∑

de=n sdte)n>0,

also written

s ∗ t = (
∑

d|n

sdtn

d
)n>0.

This product has nice properties like

s ∗ t = t ∗ s,
s ∗ (t+ u) = s ∗ t+ s ∗ u, and
s ∗ (t ∗ u) = (s ∗ t) ∗ u.

For this last equation, observe that both sides are equal to

s ∗ (t ∗ u) = (
∑

def=n sdteuf )n>0.

Consider the following sequences

O = (0, 0, 0, 0, 0, . . .),
I = (1, 0, 0, 0, 0, . . .), and
E = (1, 1, 1, 1, 1, . . .).

We easily verify that for all s we have

s ∗O = O,
s ∗ I = s, and
s ∗ E = (

∑
de=n sd)n>0 = (

∑
d|n sd)n>0.

1Commutative ring properties and more, from abstract algebra.
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So O plays a role like the zero number 0 among R or Z, and I plays a role like the unity
number 1 among R or Z. Multiplication by E is of special interest in number theory.

When does a sequence s have a multiplicative inverse, that is, have an element x =
(x1, x2, x3, x4, . . .) such that s ∗ x = I? Such x may be called x = s−1. Given s, to
compute x we have to find values x1, x2, x3, . . . satisfying the system of equations

s1x1 = 1,
s2x1 + s1x2 = 0,
s3x1 + s1x3 = 0,
s4x1 + s2x2 + s1x4 = 0,
s5x1 + s1x5 = 0,
s6x1 + s3x2 + s2x3 + s1x6 = 0,
. . .,∑

de=n sdxe = 0,
. . ..

So x1 exists exactly when s1 is invertible. Observe that if x1, x2, . . . , xn−1 can be found
for some n > 1 (so s1 is invertible), then xn can also be computed by moving all but the
last term to the right of the equation, and divide by s1. So if n > 1, then

xn = −s−1
1

∑
de=n,e<n sdxe = −s−1

1

∑
de=n,1<d sdxe.

Thus sequence s is invertible exactly when its term s1 is invertible.

Some examples about multiplicative inverses.
First example. Let s = (s1, 0, 0, 0, 0, . . .) with s1 invertible. Since 0 = s2 = s3 = s4 =

. . ., we easily compute that s−1 = (s−1
1 , 0, 0, 0, 0, . . .).

Second example. Let s = (0, 1, 0, 0, 0, . . .). Since the first term of the series equals 0,
this s is not invertible.

Third example. Let S2 = (1, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, . . .) be such that sn = 1 when n
is of the form 2k, and sn = 0 otherwise. We leave it as a non-trivial exercise to show
that S−1

2 = (1,−1, 0, 0, 0, 0, . . .), that is, x1 = 1 and x2 = −1 and all other xi = 0.
Fourth example. Let p be prime. Let sequence Sp be such that sn = 1 when n is of

the form pk, and sn = 0 otherwise. We leave it as exercise to show that S−1
p is such that

x1 = 1 and xp = −1 and all other xi = 0.
We encounter more examples of inverses farther below.

Some further examples of sequences are:

1. τ with τ(n) equal to the number of divisors of n, So τ = (1, 2, 2, 3, 2, 4, 2, . . .) where,
for example, τ(4) = 3 since n = 4 has the 3 divisors 1, 2, and 4.

2. σ with σ(n) equal to the sum of the divisor of n. So σ = (1, 3, 4, 7, 6, 12, 8, . . .)
where, for example, σ(6) = 12 since n = 6 has the sum of divisors 1+2+3+6 = 12.

3. µ, the Möbius inversion function, is defined by

• µ(1) = 1,

• µ(n) = 0 if p2|n for some prime p, and

• µ(n) = (−1)k if n is a product of k > 0 different prime numbers n =
p1p2p3 . . . pk.

4. ϕ, Euler’s totient function, is defined by

• ϕ(1) = 1, and
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• ϕ(n) = n(1 − 1/p1)(1 − 1/p2)(1 − 1/p3) . . . (1 − 1/pk), where n has stan-
dard prime decomposition n = pa1

1 pa2

2 pa3

3 . . . pak

k . Note that ϕ(n) = (pa1 −

pa1−1
1 )(pa2

2 − pa2−1
2 )(pa3

3 − pa3−1
3 ) . . . (pak

k − pak−1
k ). It is shown elsewhere that

ϕ(n) equals the number of elements of {0, 1, 2, 3, . . . , n−1} that are relatively
prime to n.

5. For each s ∈ R a sequence Ns with Ns(n) = ns (we may even choose s ∈ C). We
may write N as short for N1. We have N0 = E.

6. For each subset C ⊆ N a sequence EC with

• EC(n) = 1 if n ∈ C, and

• EC(n) = 0 if n /∈ C.

If C = ∅ we have EC = O, if C = N we have EC = E, and if C = {1} we have
EC = I. If C = {pk | k ≥ 0} for a prime p, then EC = Sp

A sequence s is called multiplicative if s(mn) = s(m)s(n) for all relatively prime pairs
m and n. We easily see that O, I, E, all Sp, τ , σ, µ, ϕ, and all Ns are multiplicative.
Some of these are completely multiplicative in that s(mn) = s(m)s(n) for all m and n.
So O,I, E, all Sp, and all Ns are completely multiplicative.

If s is multiplicative and n has prime number decomposition n = pa1

1 pa2

2 pa3

3 . . . pak

k ,
then

s(n) = s(pa1

1 )s(pa2

2 )s(pa3

3 ) . . . s(pak

k ).

So if s and t are multiplicative and s(pa) = t(pa) for all primes p and a ≥ 0, then s = t.
We leave it as an exercise to show that if s and t are multiplicative, then so is s ∗ t.

As another a bit more difficult exercise, if s is multiplicative and invertible, then s−1 is
also multiplicative.

Some easy applications. Since (E ∗ µ)(1) = 1, and (E ∗ µ)(pa) = 0 for all prime
powers pa > 1, we have E ∗µ = I. Clearly τ = E ∗E. So τ ∗µ = E ∗E ∗µ = E ∗ I = E,
and therefore

∑
de=n τ(d)µ(e) = 1, for all n.

Similarly, σ = N ∗ E. So σ ∗ µ = N , and therefore

∑
de=n σ(d)µ(e) = n, for all n.

We easily compute that ϕ(1) = (N ∗ µ)(1) = 1 and (ϕ)(pa) = (N ∗ µ)(pa) = pa − pa−1

for all prime powers pa > 1. So ϕ = N ∗ µ, so also ϕ ∗ E = N , and therefore

∑
de=n ϕ(d) = n, for all n.
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