A Combinatorial Construction used in Number Theory

WIM RUITENBURG

These are notes useful for our Number Theory class.

1 Power Series as an Example

We precede the intended topic by first making a comparison. Recall that we can compute with power series

$$f = a_0 + a_1 X + a_2 X^2 + a_3 X^3 + \ldots = \sum_{n>0} a_n X^n$$

over the real numbers in the expected way. We add or subtract power series coefficient by coefficient. So

$$(a_0 + a_1 X + a_2 X^2 + \ldots) + (b_0 + b_1 X + b_2 X^2 + \ldots) = = (a_0 + b_0) + (a_1 + b_1) X + (a_2 + b_2) X^2 + \ldots = = \sum_{n \ge 0} (a_n + b_n) X^n,$$

and

$$-(a_0 + a_1X + a_2X^2 + \ldots) =$$

= $(-a_0) + (-a_1)X + (-a_2)X^2 + \ldots =$
= $\sum_{n>0} (-a_n)X^n.$

We multiply power series by the usual 'convolution' product

$$(a_0 + a_1 X + a_2 X^2 + \dots)(b_0 + b_1 X + b_2 X^2 + \dots) =$$

= $(a_0 b_0) + (a_1 b_0 + a_0 b_1) X + (a_2 b_0 + a_1 b_1 + a_0 b_2) X^2 + \dots =$
= $\sum_{n>0} (\sum_{j+k=n} a_j b_k) X^n.$

We can also divide, finding the (multiplicative) inverse of a power series. Recall that the inverse of a number a is that number b for which both ab = 1 and ba = 1. We often write a^{-1} for this unique b. Recall that for real numbers \mathbb{R} all nonzero numbers have a (multiplicative) inverse. For example, 0.5 is the inverse of 2, and therefore also written as 0.5 = 1/2 or as $0.5 = \frac{1}{2}$ or as $0.5 = 2^{-1}$. However, the number 0 has no such inverse. Among power series over \mathbb{R} we find that many have multiplicative inverses, though not all. For example, 1 - X is invertible with inverse $\sum_{n>0} X^n$, since

$$(1-X)(1+X+X^2+X^3+\ldots) = 1,$$

while X has no inverse. In fact, more generally, a power series $a_0+a_1X+a_2X^2+a_3X^3+\ldots$ is invertible exactly when a_0 is invertible (try to prove this!). Thus $(1-X)^{-1}$ exists, while X^{-1} does not exist, among the power series.

There is no relevant information lost when we write power series as infinite sequences of numbers, like

$$f = (a_0, a_1, a_2, a_3, \ldots) = (a_n)_{n \ge 0} \quad \text{and} \\ g = (b_0, b_1, b_2, b_3, \ldots) = (b_n)_{n > 0}.$$

So

$$f + g = (a_0 + b_0, a_1 + b_1, a_2 + b_2, \ldots) = (a_n + b_n)_{n \ge 0} \text{ and} fg = (a_0 b_0, a_1 b_0 + a_0 b_1, a_2 b_0 + a_1 b_1 + a_0 b_2, \ldots = (\sum_{j+k=n} a_j b_k)_{n \ge 0}.$$

We have all these familiar nice¹ properties like (fg)h = f(gh) and f(g+h) = fg + fh. For those who remember 'Foundations of Mathematics', f and g are in essence functions from $\mathbb{Z}^{\geq 0}$ to \mathbb{R} or, in other words, elements of $\mathbb{R}^{(\mathbb{Z}^{\geq 0})}$. Sum and product are also defined by

$$(f+g)(n) = f(n) + g(n)$$
 for all $n \ge 0$, and
 $(fg)(n) = \sum_{i+k=n} f(j)g(k)$ for all $n \ge 0$.

We also talk about f and g as sequence f or sequence g. In such cases we usually write

 $(f+g)_n = f_n + g_n$ for all $n \ge 0$, and $(fg)_n = \sum_{j+k=n} f_j g_k$ for all $n \ge 0$.

2 The Dirichlet Product

Given the *example* of power series in Section 1, we now consider a different but similar such nice structure. Let us consider functions from $\mathbb{N} = \mathbb{Z}^{>0}$ to \mathbb{R} or, in other words, elements of $\mathbb{R}^{\mathbb{N}}$. Its elements are written as

$$s = (s_1, s_2, s_3, s_4, \ldots) = (s_n)_{n>0} \quad \text{or} t = (t_1, t_2, t_3, t_4, \ldots) = (t_n)_{n>0}.$$

Note that we do not have an s_0 or a t_0 . We define addition and subtraction as we did before in the power series case. So for example

$$s + t = (s_1 + t_1, s_2 + t_2, s_3 + t_3, \ldots) = (s_n + t_n)_{n > 0}.$$

We define a *new* product, called Dirichlet product or Dirichlet convolution, by

$$s * t = \left(\sum_{de=n} s_d t_e\right)_{n>0},$$

also written

$$s * t = (\sum_{d|n} s_d t_{\frac{n}{d}})_{n>0}.$$

This product has nice properties like

$$s * t = t * s,$$

 $s * (t + u) = s * t + s * u,$ and
 $s * (t * u) = (s * t) * u.$

For this last equation, observe that both sides are equal to

$$s * (t * u) = \left(\sum_{def=n} s_d t_e u_f\right)_{n>0}.$$

Consider the following sequences

 $O = (0, 0, 0, 0, 0, \dots),$ $I = (1, 0, 0, 0, 0, \dots), \text{ and }$ $E = (1, 1, 1, 1, 1, \dots).$

We easily verify that for all s we have

$$\begin{array}{l} s*O=O,\\ s*I=s, \quad \text{and}\\ s*E=(\sum_{de=n}s_d)_{n>0}=(\sum_{d\mid n}s_d)_{n>0}. \end{array}$$

¹Commutative ring properties and more, from abstract algebra.

So O plays a role like the zero number 0 among \mathbb{R} or \mathbb{Z} , and I plays a role like the unity number 1 among \mathbb{R} or \mathbb{Z} . Multiplication by E is of special interest in number theory.

When does a sequence s have a multiplicative inverse, that is, have an element $x = (x_1, x_2, x_3, x_4, \ldots)$ such that s * x = I? Such x may be called $x = s^{-1}$. Given s, to compute x we have to find values x_1, x_2, x_3, \ldots satisfying the system of equations

 $s_1x_1 = 1,$ $s_2x_1 + s_1x_2 = 0,$ $s_3x_1 + s_1x_3 = 0,$ $s_4x_1 + s_2x_2 + s_1x_4 = 0,$ $s_5x_1 + s_1x_5 = 0,$ $s_6x_1 + s_3x_2 + s_2x_3 + s_1x_6 = 0,$ $\dots,$ $\sum_{de=n} s_dx_e = 0,$

So x_1 exists exactly when s_1 is invertible. Observe that if $x_1, x_2, \ldots, x_{n-1}$ can be found for some n > 1 (so s_1 is invertible), then x_n can also be computed by moving all but the last term to the right of the equation, and divide by s_1 . So if n > 1, then

$$x_n = -s_1^{-1} \sum_{de=n, e < n} s_d x_e = -s_1^{-1} \sum_{de=n, 1 < d} s_d x_e$$

Thus sequence s is invertible exactly when its term s_1 is invertible.

Some examples about multiplicative inverses.

First example. Let $s = (s_1, 0, 0, 0, 0, ...)$ with s_1 invertible. Since $0 = s_2 = s_3 = s_4 = ...$, we easily compute that $s^{-1} = (s_1^{-1}, 0, 0, 0, 0, ...)$.

Second example. Let s = (0, 1, 0, 0, 0, ...). Since the first term of the series equals 0, this s is not invertible.

Third example. Let $S_2 = (1, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, ...)$ be such that $s_n = 1$ when n is of the form 2^k , and $s_n = 0$ otherwise. We leave it as a non-trivial exercise to show that $S_2^{-1} = (1, -1, 0, 0, 0, 0, ...)$, that is, $x_1 = 1$ and $x_2 = -1$ and all other $x_i = 0$.

Fourth example. Let p be prime. Let sequence S_p be such that $s_n = 1$ when n is of the form p^k , and $s_n = 0$ otherwise. We leave it as exercise to show that S_p^{-1} is such that $x_1 = 1$ and $x_p = -1$ and all other $x_i = 0$.

We encounter more examples of inverses farther below.

Some further examples of sequences are:

- 1. τ with $\tau(n)$ equal to the number of divisors of n, So $\tau = (1, 2, 2, 3, 2, 4, 2, ...)$ where, for example, $\tau(4) = 3$ since n = 4 has the 3 divisors 1, 2, and 4.
- 2. σ with $\sigma(n)$ equal to the sum of the divisor of n. So $\sigma = (1, 3, 4, 7, 6, 12, 8, ...)$ where, for example, $\sigma(6) = 12$ since n = 6 has the sum of divisors 1+2+3+6=12.

3. μ , the Möbius inversion function, is defined by

- $\mu(1) = 1$,
- $\mu(n) = 0$ if $p^2 | n$ for some prime p, and
- $\mu(n) = (-1)^k$ if n is a product of k > 0 different prime numbers $n = p_1 p_2 p_3 \dots p_k$.

4. φ , Euler's totient function, is defined by

•
$$\varphi(1) = 1$$
, and

- $\varphi(n) = n(1 1/p_1)(1 1/p_2)(1 1/p_3)\dots(1 1/p_k)$, where *n* has standard prime decomposition $n = p_1^{a_1} p_2^{a_2} p_3^{a_3} \dots p_k^{a_k}$. Note that $\varphi(n) = (p^{a_1} p_1^{a_1-1})(p_2^{a_2} p_2^{a_2-1})(p_3^{a_3} p_3^{a_3-1})\dots(p_k^{a_k} p_k^{a_k-1})$. It is shown elsewhere that $\varphi(n)$ equals the number of elements of $\{0, 1, 2, 3, \dots, n-1\}$ that are relatively prime to *n*.
- 5. For each $s \in \mathbb{R}$ a sequence N_s with $N_s(n) = n^s$ (we may even choose $s \in \mathbb{C}$). We may write N as short for N_1 . We have $N_0 = E$.
- 6. For each subset $C \subseteq \mathbb{N}$ a sequence E_C with
 - $E_C(n) = 1$ if $n \in C$, and
 - $E_C(n) = 0$ if $n \notin C$.

If $C = \emptyset$ we have $E_C = O$, if $C = \mathbb{N}$ we have $E_C = E$, and if $C = \{1\}$ we have $E_C = I$. If $C = \{p^k \mid k \ge 0\}$ for a prime p, then $E_C = S_p$

A sequence s is called *multiplicative* if s(mn) = s(m)s(n) for all relatively prime pairs m and n. We easily see that O, I, E, all S_p , τ , σ , μ , φ , and all N_s are multiplicative. Some of these are *completely multiplicative* in that s(mn) = s(m)s(n) for all m and n. So O,I, E, all S_p , and all N_s are completely multiplicative.

If s is multiplicative and n has prime number decomposition $n = p_1^{a_1} p_2^{a_2} p_3^{a_3} \dots p_k^{a_k}$, then

$$s(n) = s(p_1^{a_1})s(p_2^{a_2})s(p_3^{a_3})\dots s(p_k^{a_k})$$

So if s and t are multiplicative and $s(p^a) = t(p^a)$ for all primes p and $a \ge 0$, then s = t.

We leave it as an exercise to show that if s and t are multiplicative, then so is s * t. As another a bit more difficult exercise, if s is multiplicative and invertible, then s^{-1} is also multiplicative.

Some easy applications. Since $(E * \mu)(1) = 1$, and $(E * \mu)(p^a) = 0$ for all prime powers $p^a > 1$, we have $E * \mu = I$. Clearly $\tau = E * E$. So $\tau * \mu = E * E * \mu = E * I = E$, and therefore

 $\sum_{de=n} \tau(d) \mu(e) = 1,$ for all n.

Similarly, $\sigma = N * E$. So $\sigma * \mu = N$, and therefore

$$\sum_{de=n} \sigma(d)\mu(e) = n$$
, for all n .

We easily compute that $\varphi(1) = (N * \mu)(1) = 1$ and $(\varphi)(p^a) = (N * \mu)(p^a) = p^a - p^{a-1}$ for all prime powers $p^a > 1$. So $\varphi = N * \mu$, so also $\varphi * E = N$, and therefore

 $\sum_{de=n} \varphi(d) = n$, for all n.