A Combinatorial Construction
used in Number Theory

WIiM RUITENBURG

These are notes useful for our Number Theory class.

1 Power Series as an Example

We precede the intended topic by first making a comparison. Recall that we can compute
with power series

f=ap —I—a1X+a2X2 —|—a3X3 +...= ZnZO anp X"

over the real numbers in the expected way. We add or subtract power series coefficient
by coefficient. So

(a0 + a1 X +asX?+..)+ (bg+ 01X + b X2 +...) =
= (a0+bo)+(a1 +b1)X-|—(CI,2—|—b2)X2+... =
= ano(an +by) X",

and

—(ag + X + aX? +...) =
=(—ag) + (—a1)X + (—a2)X?*+ ... =
= so(—an)X™.

We multiply power series by the usual ‘convolution’ product

(0,0 —|—a1X—|—a2X2 —|— )(bo +b1X—|—b2X2 + ) =
= (aobo) —+ (a1b0 —+ aobl)X —+ ((IQbO —+ a1b1 —+ aon)X2 +...=
= Zn20(2j+k:n a;by) X"

We can also divide, finding the (multiplicative) inverse of a power series. Recall that the
inverse of a number a is that number b for which both ab = 1 and ba = 1. We often
write a~! for this unique b. Recall that for real numbers R all nonzero numbers have a
(multiplicative) inverse. For example, 0.5 is the inverse of 2, and therefore also written
as 0.5=1/2or as 0.5 = % or as 0.5 = 271. However, the number 0 has no such inverse.
Among power series over R we find that many have multiplicative inverses, though not
all. For example, 1 — X is invertible with inverse ) ., X", since

A-X)1+X+X2+X3+..)=1,

while X has no inverse. In fact, more generally, a power series ag+a1 X +as X 2+a3 X3 +. ..
is invertible exactly when ag is invertible (try to prove this!). Thus (1 — X)~! exists,
while X! does not exist, among the power series.

There is no relevant information lost when we write power series as infinite sequences
of numbers, like

f=1(ao,a1,a2,as,...) = (an)n>0 and
g = (bo,bl,bg,bg, .. ) = (bn)nzo.

So

erg:(a0+b0,a1+b1,a2+b2,...):(an+bn)n20 and
fg = (a0b07a1b0 + aobl, a2b0 + a1b1 + aobg, Lee = (Zj—i—k:n ajbk)nzo.



We have all these familiar nice! properties like (fg)h = f(gh) and f(g+h) = fg+ fh.
For those who remember ‘Foundations of Mathematics’, f and g are in essence functions

from Z=Y to R or, in other words, elements of RZ="). Sum and product are also defined
by

(f+9)(n) = f(n)+g(n) foralln >0, and
(f9)(n) = X2 4 j—p f(G)g(k) for all n > 0.

We also talk about f and g as sequence f or sequence g. In such cases we usually write

(f+9)n=fn+gnforalln>0, and
(fg)n = ZjJrk:n fjgk for all n > 0.

2 The Dirichlet Product

Given the example of power series in Section 1, we now consider a different but similar
such nice structure. Let us consider functions from N = Z>° to R or, in other words,
elements of RN. Its elements are written as

s =1(81,82,83,84,--.) = (Sn)n>0 O
t= (t17t23t35t47 .- ) = (tn)n>0-

Note that we do not have an sg or a tg. We define addition and subtraction as we did
before in the power series case. So for example

s+t=(s1+1t1,82 +1t2,83+13,...) = (80 + tn)n>o0-
We define a new product, called Dirichlet product or Dirichlet convolution, by

sxt= (Zde:n Sdte)n>07

also written

Sxt = (Z Sdt%)n>0.

d|n
This product has nice properties like

sxt=1xs,
sx(t4+u)=s*xt+s+u, and
sk (txu) = (s*t)*u.

For this last equation, observe that both sides are equal to

s# (txu) = (D40 = Saletlf)n>0-

Consider the following sequences

0 = (0,0,0,0,0,...),
I1=(1,0,0,0,0,...), and
E=(1,1,1,1,1,...).

We easily verify that for all s we have

sx0O =0,
sxI=s, and
5% B = (X gemn 5d)n>0 = (Xgjn Sa)n>0-

1Commutative ring properties and more, from abstract algebra.




So O plays a role like the zero number 0 among R or Z, and I plays a role like the unity
number 1 among R or Z. Multiplication by F is of special interest in number theory.

When does a sequence s have a multiplicative inverse, that is, have an element x =
(w1, 2,23,24,...) such that s x z = I? Such x may be called + = s~!. Given s, to

compute x we have to find values x1, x2, x3, ... satisfying the system of equations

S$1T1 = 17

S2x1 + s122 = 0,

s3x1 + s1x3 =0,

8471 + S22 + 174 = 0,

S5X1 + S1T5 = 0,

S¢T1 + S3T2 + sax3 + s1xg = 0,

Cey
Zde:n SdTe = 07

So x7 exists exactly when s; is invertible. Observe that if 1, xs,...,x,—1 can be found
for some n > 1 (so s is invertible), then x,, can also be computed by moving all but the
last term to the right of the equation, and divide by s;. So if n > 1, then

1 E——
In = =5 Zde:n,e<n SdTe = —5; Zde:n,1<d SdTe-
Thus sequence s is invertible exactly when its term s; is invertible.

Some examples about multiplicative inverses.

First example. Let s = (s1,0,0,0,0,...) with s; invertible. Since 0 = s3 = §3 = 54 =
..., we easily compute that s~ = (s7*,0,0,0,0,...).

Second example. Let s = (0,1,0,0,0,...). Since the first term of the series equals 0,
this s is not invertible.

Third example. Let Sy = (1,1,0,1,0,0,0,1,0,0,0,...) be such that s,, = 1 when n
is of the form 2%, and s,, = 0 otherwise. We leave it as a non-trivial exercise to show
that Sy ' = (1,-1,0,0,0,0,...), that is, 2; = 1 and 5 = —1 and all other x; = 0.

Fourth example. Let p be prime. Let sequence S}, be such that s, = 1 when n is of
the form p*, and s,, = 0 otherwise. We leave it as exercise to show that Sy ! is such that
21 =1 and z, = —1 and all other z; = 0.

We encounter more examples of inverses farther below.

Some further examples of sequences are:

1. 7 with 7(n) equal to the number of divisors of n, So 7 = (1,2,2,3,2,4,2,...) where,
for example, 7(4) = 3 since n = 4 has the 3 divisors 1, 2, and 4.

2. o with o(n) equal to the sum of the divisor of n. So o = (1,3,4,7,6,12,8,...)
where, for example, 0(6) = 12 since n = 6 has the sum of divisors 1+2+3+6 = 12.

3. p, the Mobius inversion function, is defined by
o u(l) =1,
e u(n) = 0 if p?|n for some prime p, and

n
e u(n) = (=1)k if n is a product of k > 0 different prime numbers n =
b1p2p3 - - - Pk-

4. ¢, Euler’s totient function, is defined by
e ©(1) =1, and



e o(n) = n(l —1/p1)(1 —1/p2)(1 — 1/p3)...(1 — 1/px), where n has stan-
dard prime decomposition n = pi'py*ps®...pp*. Note that ¢(n) = (p** —
P (pe — p2 ) (p% —pE T L. (pRk —pZ’“_l). It is shown elsewhere that
p(n) equals the number of elements of {0,1,2,3,...,n— 1} that are relatively
prime to n.

5. For each s € R a sequence N, with Ny(n) = n® (we may even choose s € C). We
may write IV as short for N;. We have Ny = E.

6. For each subset C' C N a sequence E¢ with

o Fo(n)=1iftne C, and
L] EC(n)201fn¢C

If C =0 we have Ec = O, if C = N we have E¢c = E, and if C = {1} we have
Ec=1.1f C = {p* | k> 0} for a prime p, then Ec = S,

A sequence s is called multiplicative if s(mn) = s(m)s(n) for all relatively prime pairs
m and n. We easily see that O, I, F, all S, 7, o, p, ¢, and all N, are multiplicative.
Some of these are completely multiplicative in that s(mn) = s(m)s(n) for all m and n.
So O,1, E, all S, and all N, are completely multiplicative.

If s is multiplicative and n has prime number decomposition n = p'p5>ps® ... pL*,
then

s(n) = s(p1*)s(py?)s(pz*) - - s(p)")-

So if s and t are multiplicative and s(p®) = ¢(p®) for all primes p and a > 0, then s = t¢.
We leave it as an exercise to show that if s and ¢ are multiplicative, then so is s * t.
As another a bit more difficult exercise, if s is multiplicative and invertible, then s is
also multiplicative.
Some easy applications. Since (F * u)(1) = 1, and (E * u)(p*) = 0 for all prime
powers p* > 1, we have Expu=1. Clearly r=FExE. Sotxu=ExExu=FExI=FE,

and therefore
> don T(d)p(€) = 1, for all n.

Similarly, 0 = N * E. So o * u = N, and therefore
Y de—n 0(d)p(e) = n, for all n.

We easily compute that ¢(1) = (N * p)(1) = 1 and (¢)(p?) = (N * u)(p?) = p* — p*~*
for all prime powers p® > 1. So ¢ = N % u, so also ¢ * E = N, and therefore

Zde:n @(d) =n, for all n.



