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These are notes useful for our Number Theory class.

1 The Order of an Element

Let n > 1 be a natural number. The order modulo n of an a ∈ Z with gcd(a, n) = 1 is
the least m > 0 such that am ≡ 1 mod n. Equation gcd(a, n) = 1 holds exactly when
there are s and t such that sa + tn = 1 exactly when a is invertible modulo n (in this
case as ≡ 1 mod n).

By Euler’s Theorem we know that aϕ(n) ≡ 1 mod n. So the order of a modulo n

divides ϕ(n). For example when n = 15, then ϕ(15) = (3 − 1)(5 − 1) = 8. Since
gcd(2, 15) = 1 we have 28 ≡ 1 mod 15. We easily see that 2 has order 4 modulo 15 since
24 ≡ 1 mod 15. Obviously order 4 divides ϕ(15) = 8. Element a is called primitive

modulo n if its order equals ϕ(n). For example modulo n = 10 we have ϕ(10) =
(2 − 1)(5 − 1) = 4 and the invertible elements are 1 of order 1, 3 of order 4, 7 of order
4, and 9 of order 2. So 3 and 7 are the primitive elements modulo 10. However, there
are n > 1 for which there are no primitive elements. For example modulo n = 15 the
invertible elements are 1, 2, 4, 7, 8, 11, 13, and 14, whose orders all divide 4, while
ϕ(15) = 8.

When do we have primitive elements modulo n? The following Proposition helps a
little.

Proposition 1.1. Let a and b be invertible elements modulo n of orders k and l respec-

tively, where gcd(k, l) = 1. Then ab has order kl modulo n.

Proof. Since (ab)kl = aklbkl ≡ 1 mod n, we have that the order of ab modulo n divides kl.
There is a least s with 0 < s ≤ kl with (ab)s = asbs ≡ 1 mod n. So as ≡ (b−1)s mod n.
Now the order of as modulo n divides k while the order of (b−1)s modulo n divides l.
Since as ≡ (b−1)s mod n, their orders are the same modulo n. Thus their order modulo
n divides gcd(k, l) = 1. Thus as ≡ (b−1)s ≡ 1 mod n, that is, the orders of a and b−1

divide s. Since a has order k and b−1 has order l, we have that least common multiple
kl divides s. Thus s = kl.

Let us look at the special case when n = p is prime. Then ϕ(p) = p − 1, and
gcd(a, p) = 1 for all a ∈ {1, 2, 3, 4, . . . , p − 1}. So if 0 < a < p, then ap−1 ≡ 1 mod p

(Fermat’s Little Theorem). So the order of a modulo p divides p − 1. Element a is
primitive if its order equals p − 1. Below we show that we have primitive elements
modulo prime p.

First a brief story about polynomials a0+a1X+a2X
2+ . . .+amXm mod p. We can

add, subtract, and multiply such polynomials as we are used to, except that we take the
coefficients modulo prime p. An important property that holds modulo prime p but not
always modulo a composite number n is that the degree of a product of two non-zero
polynomials equals the sum of the degree of these polynomials,as is easily seen when we
look at the product

(a0 + a1X + . . .+ akX
k)(b0 + b1X + . . .+ blX

l) =
a0b0 + (a1b0 + a0b1)X + . . .+ akblX

k+l,
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where ak 6≡ 0 mod p and bl 6≡ 0 mod p imply that akbl 6≡ 0 mod p. As a consequence a
polynomial modulo prime p can have no more roots than its degree, even when we count
multiplicities of roots. This is a key property which always works modulo primes p, but
not so modulo composite numbers.

Now look at polynomial Xp−1−1 modulo prime p. This polynomial has at most p−1
roots modulo p. By Fermat’s Little Theorem all p− 1 elements a ∈ {1, 2, 3, 4, . . . , p− 1}
are such that ap−1 − 1 ≡ 0 mod p. So these are all the roots. So

Xp−1 − 1 ≡ (X − 1)(X − 2)(X − 3)(. . .)(X − (p− 1)) mod p.

Recall from geometric sequences the simple formula

Y m − 1 = (Y − 1)(Y m−1 + Y m−2 + . . .+ Y + 1).

So for all positive k and l we have

Xkl − 1 = (Xk − 1)(Xk(l−1) +Xk(l−2) + . . .+Xk + 1).

When p − 1 = kl, the formula above applies to Xp−1 − 1 = Xkl − 1, which splits into
a product of p − 1 different linear factors of the form X − i modulo p. So therefore
Xk − 1 is a product of k such linear factors X − i of all the i such that ik ≡ 1 mod p.
Integer p− 1 has a standard prime decomposition p− 1 = pr11 pr22 . . . prss . Set k = pr11 and
l = pr22 . . . prss . So

Xp−1 − 1 = (Xp
r1

1 − 1)(Xp
r1

1
(l−1) +Xp

r1

1
(l−2) + . . .+Xp

r1

1 + 1).

Factor Xp
r1

1 − 1 equals a product of pr11 many factors of the form X − i modulo p. Each

i of such a factor X − i is such that ip
r1

1 ≡ 1 mod p. So the order of this i divides pr11 .
Next we show that pr11 − pr1−1

1 many of these i have order equal to pr11 . Here is how. All

roots i of Xp
r1

1 − 1 that have order less than pr11 , have an order that divides pr1−1
1 , and

so are roots of the polynomial Xp
r1−1

1 − 1 modulo p. But

Xp
r1

1 − 1 = (Xp
r1−1

1 − 1)(Xp
r1−1

1
(p1−1) +Xp

r1−1

1
(p1−2) + . . .+Xp

r1−1

1 + 1)

splits into linear factors. All i of order less than pr11 are roots of Xp
r1−1

1 − 1 modulo p.
There are pr11 − pr1−1

1 roots left, which all have order pr11 modulo p.
What works for prime power pr11 above works for all prime powers that divide p− 1.

So for all such prii there is an element ai of order prii modulo p. By Proposition 1.1
the product c = a1a2 . . . as has order p − 1 = pr11 pr22 . . . prss modulo prime p. Thus c is
primitive.

We showed elsewhere (with a short proof) that if there is one primitive element
modulo n, then there are ϕ(ϕ(n)) many primitive elements modulo n. So there are
ϕ(p− 1) many primitive elements modulo prime p. Note that this also follows with the
calculations above.
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