MATH 2ddd formalization exercises

WIM RUITENBURG 28 October 2018

Below starts with a list of problems *with* solutions, as discussed in class. Solve the problems starting from unsolved F12.

Recall the logical symbols \land for and, \lor for or, \rightarrow for implies, \neg for not, \top for true, \bot for false, \forall for for all, and \exists for there exists. Below we always include atom = for equality.

F1. We are given the domain of integers \mathbb{Z} , and our language has atoms for equality =, for less-than <, the usual polynomials with plus, minus, and times, and constants $0, 1, 2, 3, \ldots$ And a constant symbol c standing for an integer, you don't know which. Formalize the statement that c is a multiple of 10.

Solution: $\exists x (c = 10 * x).$

F2. We are given the domain of integers \mathbb{Z} , and our language has atoms for equality =, for less-than <, the usual polynomials with plus, minus, and times, and constants $0, 1, 2, 3, \ldots$ And a constant symbol c standing for an integer, you don't know which. Formalize the statement that c is not a multiple of 50.

Solution: $\neg \exists x (c = 50 * x)$ or $\forall x \neg (c = 50 * x)$.

F3. We are given the domain of integers \mathbb{Z} , and our language has atoms for equality =, for less-than <, the usual polynomials with plus, minus, and times, and constants $0, 1, 2, 3, \ldots$ And a constant symbol cstanding for an integer, you don't know which. Formalize the statement that c is a multiple of 10 but not a multiple of 50.

Solution: $\exists x(c = 10 * x) \land \neg \exists x(c = 50 * x).$

F4. We are given the domain of integers \mathbb{Z} , and our language has atoms for equality =, for less-than <, the usual polynomials with plus, minus, and times, and constants $0, 1, 2, 3, \ldots$ And constant symbols c, d, and e standing for integers, you don't know which ones. Formalize the statement that c is a multiple of d but not a multiple of e.

Solution: $\exists x (c = d * x) \land \neg \exists x (c = e * x).$

F5. We are given the domain of integers \mathbb{Z} , and our language has atoms for equality =, for less-than <, the usual polynomials with plus, minus, and times, and constants $0, 1, 2, 3, \ldots$ And a constant symbol cstanding for an integer, you don't know which. Formalize the statement that c is not negative. Write a version that does not use the negation symbol \neg .

Solution: $c = 0 \lor 0 < c$.

F6. We are given the domain of integers \mathbb{Z} , and our language has atoms for equality =, for less-than <, the usual polynomials with plus, minus, and times, and constants $0, 1, 2, 3, \ldots$ And constant symbols c and d standing for integers, you don't know which ones. Formalize the statement that d is positive and c^2 is greater than d.

Solution: $0 < d \land d < c^2$.

F7. We are given the domain of integers \mathbb{Z} , and our language has atoms for equality =, for less-than <, the usual polynomials with plus, minus, and times, and constants $0, 1, 2, 3, \ldots$ And constant symbols c and d standing for integers, you don't know which ones. Formalize the statement that d is positive and c is the largest number such that c^2 is less than d.

Solution: $0 < d \land c^2 < d \land \forall x(x^2 < d \rightarrow (x < c \lor x = c)).$

F8. We are given the domain of rationals \mathbb{Q} , and our language has atoms for equality =, for less-than <, the usual polynomials with plus, minus, and times, and constants $0, 1, 2, 3, \ldots$ And a function symbol fstanding for a function from \mathbb{Q} to \mathbb{Q} . Formalize the statement that fis a one-to-one function (injective).

Solution: $\forall x \forall y (f(x) = f(y) \rightarrow x = y).$

F9. We are given the domain of rationals \mathbb{Q} , and our language has atoms for equality =, for less-than <, the usual polynomials with plus, minus, and times, and constants $0, 1, 2, 3, \ldots$ And a function symbol fstanding for a function from \mathbb{Q} to \mathbb{Q} . Formalize the statement that fis an onto function (surjective).

Solution: $\forall x \exists y (f(y) = x).$

F10. We are given the domain of rationals \mathbb{Q} , and our language has atoms for equality =, for less-than <, the usual polynomials with plus, minus, and times, and constants $0, 1, 2, 3, \ldots$ And a function symbol fstanding for a function from \mathbb{Q} to \mathbb{Q} . Formalize the statement that fis a one-to-one and onto function (bijective).

Solution: $\forall x \forall y (f(x) = f(y) \rightarrow x = y) \land \forall x \exists y (f(y) = x).$

F11. We are given the domain of rationals \mathbb{Q} , and our language has atoms for equality =, for less-than <, the usual polynomials with plus, minus, and times, and constants $0, 1, 2, 3, \ldots$ And a function symbol fstanding for a function from \mathbb{Q} to \mathbb{Q} . Formalize the statement that fis a strictly increasing function.

Solution: $\forall x \forall y (x < y \rightarrow f(x) < f(y)).$

- F12. We are given the domain of rationals \mathbb{Q} , and our language has atoms for equality =, for less-than <, the usual polynomials with plus, minus, and times, and constants $0, 1, 2, 3, \ldots$ And a function symbol fstanding for a function from \mathbb{Q} to \mathbb{Q} . Formalize the statement that fis (weakly) decreasing.
- F13. We are given the domain of rationals \mathbb{Q} , and our language has atoms for equality =, for less-than <, the usual polynomials with plus, minus, and times, and constants $0, 1, 2, 3, \ldots$ And a function symbol fstanding for a function from \mathbb{Q} to \mathbb{Q} . Formalize the statement that f has a maximum (nothing is said for which value the maximum is reached).

- F14. We are given the domain of rationals \mathbb{Q} , and our language has atoms for equality =, for less-than <, the usual polynomials with plus, minus, and times, and constants $0, 1, 2, 3, \ldots$ Formalize the statement that all positive numbers are a sum of 4 squares.
- F15. We are given the domain of rationals \mathbb{Q} , and our language has atoms for equality =, for less-than <, the usual polynomials with plus, minus, and times, and constants $0, 1, 2, 3, \ldots$ Formalize the statement that there is a positive number which is not a sum of 3 squares.
- F16. We are given the domain of rationals \mathbb{Q} , and our language has atoms for equality =, for less-than <, the usual polynomials with plus, minus, and times, and constants $0, 1, 2, 3, \ldots$ Formalize the statement that there is a positive number which is a sum of 4 squares but not a sum of 3 squares.