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Abstract

We define two notions for intuitionistic predicate logic: that of a
submodel of a Kripke model, and that of a universal sentence. We then
prove a corresponding preservation theorem. If a Kripke model is viewed
as a functor from a small category to the category of all classical models
with (homo)morphisms between them, then we define a submodel of a
Kripke model to be a restriction of the original Kripke model to a sub-
category of its domain where every node in the subcategory is mapped
to a classical submodel of the corresponding classical model in the range
of the original Kripke model. We call a sentence universal if it is built
inductively from atoms (including T and L) using A, V, V, and —, with
the restriction that antecedents of — must be atomic. We prove that
an intuitionistic theory is axiomatized by universal sentences if and only
if it is preserved under Kripke submodels. We also prove the following
analogue of a classical model-consistency theorem: The universal frag-
ment of a theory I' is contained in the universal fragment of a theory
A if and only if every rooted Kripke model of A is strongly equivalent
to a submodel of a rooted Kripke model of I".  Our notions of Kripke
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submodel and universal sentence are natural in the sense that in the
presence of the rule of excluded middle, they collapse to the classical
notions of submodel and universal sentence.
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1 Introduction

In his paper, ”Submodels of Kripke Models” [6], Albert Visser suggests several
different notions of a submodel of a Kripke model for intuitionistic predicate
logic: First, if a Kripke model is viewed as a functor from an arbitrary small
category to the category of all classical models with morphisms between them,
then one might consider a submodel to be a functor defined on the same domain
(category) of the original Kripke model, but where every node is mapped to
a classical submodel of the corresponding classical model in the range of the
original Kripke model. Second, one might consider a submodel to be the
restriction of the original Kripke model (as a functor) to a full subcategory
of its domain. Third, one might consider a submodel to be a combination of
the first and second notions. In [6], Visser chooses the second notion (above),
and proves that an intuitionistic theory is preserved under Kripke submodels
if and only if it is axiomatized by semipositive sentences. The first notion is
considered by Bagheri and Moniri in [1].

When defining notions of Kripke submodel and universal sentence for intu-
itionistic logic, it seems reasonable to demand the following properties: First,
both the notion of submodel and universal sentence should include the classi-
cal notions as special cases and should reduce to them in the case where the
law of excluded middle is included as an axiom schema in the base theory,
in which case intuitionistic predicate logic and classical predicate logic coin-
cide. Second, an intuitionistic theory A O T" should be preserved under Kripke
submodels that satisfy a base theory I' if and only if A is axiomatizable by
universal sentences over I'. Third, given theories I' and A, it should be the
case that the universal fragment of I' is contained in the universal fragment of
A if and only if every model of A is contained in a model of I', in which case
I is said to be model-consistent relative to A, see [3].

To this end, we define a submodel of a Kripke model to be a restriction
of the original Kripke model (viewed as a functor) to a subcategory of its
domain, but where every node in the subcategory is mapped to a classical
submodel of the corresponding classical model in the range of the original
Kripke model. This notion corresponds to the third suggestion of Visser’s, and
it includes the first and second notions as special cases. In the case where the
law of excluded middle is axiomatized in the base theory, the Kripke models
involved become essentially classical models, in that forcing at a node coincides
with satisfaction in the corresponding classical model, and all morphisms are
elementary embeddings. If such Kripke models are rooted, it follows that the
sentences true in the Kripke model are precisely the sentences classically true
at the root, and in this case our notion of submodel coincides with the classical
notion. We also define a class of universal sentences for intuitionistic predicate
logic that coincides (up to provable equivalence) with the class of IIY sentences
of classical logic in the presence of the law of excluded middle. We call a
sentence universal if it is built inductively from atomic sentences (including
T and 1) using A, V, V, and —, with the restriction that antecedents of —



must be atomic. We prove that a theory is axiomatized by universal sentences
if and only if it is preserved under Kripke submodels. Our proof is based
on Visser’s proof in [6]. We also prove an intuitionistic analogue of a classical
model-consistency theorem, using our notions of universal sentence and Kripke
submodel: Given intuitionistic theories I' and A, the universal fragment of I’
is contained in the universal fragment of A if and only if every rooted Kripke
model of A is strongly equivalent to a submodel of a rooted Kripke model of
T". The notion of strong equivalence is defined in Section 4.

We consider a first order language L to be the set of formulas that can be
built from a symbol set (variables, relation, function, and constant symbols)
using T, L, A, V, —, 3, and V. In the present paper, we consider only languages
that include = as a binary relation, interpreted as real equality in a model.
Symbols T and L are both atoms and nullary connectives. Negation —¢ is
short for ¢ — L, and bi-implication ¢ < v is short for (¢ — ¥) A (¢ —
). We use the bold font (A) to denote categories, the fraktur font (2() to
denote first order classical models and Kripke models, and the calligraphy
font (A) to denote languages and subsets of languages. In addition, we make
use of the following notational conventions: A list of constant symbols or
variables t1,...,t, is abbreviated as t. If C' is an arbitrary set of constants,
then £(C) is the language £ extended by all constants in C. At C L is the
set of atomic formulas in £. Analogously, At(C) C L(C) is the set of atomic
formulas in £(C'), and so on. Given a classical model 2, the domain of 2 is
denoted A, and L(A) is the language £ extended by a new constant for every
element in A. The symbol |= denotes classical satisfaction in a model, and it
is defined for sentences (closed formulas) only. Th() = {p € L(A) : A |E ¢}
is the elementary diagram of 2{. This notation is convenient, since we can
write Th() N £ for the complete theory of 2 over £, Th(A) N At(A) for the
positive atomic diagram of 2, and so on. The symbol F denotes intuitionistic
derivability, and is defined for sentences only. If I' C L is a set of sentences,
then Th(T') = {9 € L : T F ¢} is the deductive closure of T" over L. If
C' is an arbitrary set of constants and T' C £(C) is a set of sentences, then
Th[C|(T) = {p € L(C) : T I ¢} is the deductive closure of T' over L(C).
We consider a theory to be a set of sentences closed under (intuitionistic)
deduction.

2 Kripke Models

Let £ be a first order language, and let M(L) be the category of all classical
models for the language £, with all (homo)morphisms between them. That is,
a morphism in this category is a classical homomorphism in the sense of [4] and
[2]. Let A be an arbitrary small category (in practice, A is often taken to be a
small poset category). A Kripke model 2 is a functor 2 : A — M(L). So for
every object ¢ € |A], there is an associated classical model 2((z) = 2; in M(L),
and for every arrow f : ¢ — j in A, there is an associated morphism 2(f)
=Af : A; — A;. Contrary to [5], we interpret the equality predicate as real
equality in each node structure 2;. The existence of a morphism A f : ; — A,
means essentially that 2(; models the positive atomic diagram of ;. That is,
for all sentences p(a) € At(A;) witha € A;,if 2, |= ¢(a) then 2A; = p(Af(a)).
Let & : A — M(L) be a Kripke model. For every node ¢ € |A| and for
every sentence ¢ € L(A;), we define the forcing relation IF* inductively by:

ilF* ¢ < A =, for all (atomic) sentences ¢ € At(4;),
iFr oAy & ilF* g and i IFY 9,



iFpvy o ilF* porilF®yp,

ik p = & forall f:i— 7, if jIF% o/ then j IF% 7,

i IF* Vop(z) < forall f:i— j and for all a € 4, j IF* ¢/ (a),
and

i IF* 3zp(z) < ilF* p(a) for some a € A;,

where ¢/ € L(A;) is constructed from ¢ € L(A;) by replacing all constant
symbols a € A; in ¢ by 2f(a) € A;.

We say that a sentence ¢ € L(A;) is true at node i € |[A] if A; = p. We
say that a sentence ¢ € L(A;) is forced at node i € |A| if i IF* . We say that
a sentence ¢ € L is forced in the Kripke model 2, written 2 IF ¢, if i [F® ¢ for
alli € |A|. If T' C L is a set of sentences, then 2 I+ T' if and only if A I+ ¢ for
all ¢ € T'. The Kripke model 2 is rooted if there exists an ig € |A| such that
for all i € |A|, there is an f : igp — ¢ in A. It is easy to verify that sentences
in Kripke models are persistent: that is, for all f : ¢ — j in A and for all
o € L(Ay), if i IF® ¢ then j IF* of. In the case of a rooted Kripke model A
with root iy, we have 2 I ¢ if and only if ig IF* .

Let C be an arbitrary set of constants. A theory I' over £(C) is called
prime if for all sentences p, 9 € L(C), we have T' F ¢V if and only if T' F ¢ or
I'F 4. A consistent theory I" over £(C) is called C-Henkin if for all sentences
Jxp(z) € L(C), we have I' - Jzp(x) if and only if there is a ¢ € C such that
T'F ¢(c). A theory is called C-Henkin prime if it is both C-Henkin and prime.

The next two results are basic to intuitionistic logic:

Proposition 2.1 Let L be a first order language, let C' be a set of constants
not in L, with |C| > |L|, let ¢ € L be a sentence, and let T be a theory over
L such that Tt/ @. Then there is a C-Henkin prime theory I over L(C) such
that T C TV and TV t/ .

Proof. See [2], Section 5.3. -

Proposition 2.2 Let L be a first order language, let C be a set of constants,
and let T be a C-Henkin prime theory over L(C'). Then there is a rooted Kripke
model 2 over L(C) such that

AL <ThEe, foralepeLl(C).

Proof. See [2], Section 5.3.

3 Kripke Submodels and Universal Sentences

IfA: A— M(L) and B : B — M(L) are Kripke models, then 2 is a submodel
of B if and only if A is a subcategory of B, and for all ¢ € |A|[, the structure
2A; is a classical submodel of 9B;. That is, 2 C B if and only if A C B and
A; C 9B, for all i € |A]. We also say that B is an extension of 2.

Let £ be a first order language. We define the set of universal formulas
U C L inductively by:

peAt = pel,

o, YEU = pAY, pVY €U,
peA, veU = ¢ —p €U, and
peU = Vxpel.



The set of positive existential formulas £ C L is the set containing At and
closed under A, V, and 3. Following Troelstra and van Dalen [5], we denote
intuitionistic predicate logic by IQC. We note the following:

1QC F ((p A) = 0) 4 (9 = (4 — 0)),
IQC F ((p V) = 0) & (9 — O) A (¢ = 0)),  and
IQC b (Grp(r) — )  Va(p(z) — o)

(where in the third case, = is not free in ). Using these intuitionistic
tautologies, it is easy to see that any sentence of the form ¢ — 1, where
p € ET and ) € U, is provably equivalent (over IQC) to a sentence in U. Also,
in the presence of the law of excluded middle, the set &/ becomes the set of
classical TI{ formulas.

First we prove the following simple result, which is one direction of our
preservation theorem.

Theorem 3.1 Let I' C A be intuitionistic theories over a language L, and
suppose that A is axiomatizable by universal sentences over I'. Then for all
Kripke models A |- T' and B IF A, if A C B, then A - A. That is, A is
preserved under I'-Kripke submodels.

Proof. Suppose that A is axiomatized by universal sentences over I'. Let
A: A — M(L) and B : B — M(L) be Kripke models such that 2 IF T, B |- A,
and A C B. It suffices to show that 2 IF A NY/. This will follow if we show
that for all i € |A| and for all sentences ¢ € U(A;), if i IF® ¢ then i IF* .
The proof is by induction on the complexity of ¢, for all ¢ simultaneously. Let
i € |Al], and let ¢ € U(A;) be a sentence. Suppose ¢ € At(A4;) is atomic,
and i IF® . Since A; C B;, we have ¢ € At(A;) C At(B;). So B; = ¢.
Thus, since ¢ is quantifier free, and 2l; C B;, we have ; = ¢. So i IF% ¢.
The induction steps for ¢ := ¥ A 6§ and ¢ := ¥ V 0 are obvious. Suppose
i IF® 4 — 0, where ¢ € At(4;). Let g : i — j be in A. Suppose j IF* 9.
Since 99 € At(A;), we have ; = ¢9. Since ; C B;, we have B; = ¢9.
Since A; C B;, we have ¢9 € At(A4;) C At(B;). So j IF® 9. Since A C B,
g :i — jisin B. Thus, since i F® ¢ — 6 and j IFP 9, we have j IF2 9.
So by induction hypothesis, j IF* 9. So for all g : i — j in A, if j IF* 19
then j IF* #9. Thus, i IF* ¢ — 6. Now suppose i IF® Vzp(z). Let g : i — j
be in A. Let a € A; C B;. Since A C B, g:i— jisin B. So j IF® 9(a).
By induction hypothesis, we have j IF* ¢9(a). So for all g : i — j in A and
for all a € A;, we have j IF* ©9(a). Thus, i IF* Vap(z). This completes the
induction on the complexity of ¢. H

Next we prove a lemma that is used heavily in the subsequent result. First
we give a definition:

Definition 3.2 Let £ be a first order language, let C and D be sets of con-
stants with C C D, let T' be a consistent theory over L(C) and let A be a
consistent theory over L(D). The quadruple (I',C, D, A) is called acceptable
fTNA(C) C A and ANU(C) CT.

Lemma 3.3 Let L be a first order language, let C and D be sets of constants
with C C D, let T be a consistent theory over L(C) and let A be a consistent
theory over L(D). If ANU(C) C T, then the quadruple (I',C, D, Th[D](A U
(TN At(C)))) is acceptable.



Proof. Let A" = Th[D](AU(I'NAt(C))). Obviously, ' N At(C) C A’. We
must show that A’NU(C) CT. Let ¢ € A’'NU(C). Then AU NAL(C)) F .
By compactness, we have A U {p} F ¢, where p is a conjunction of atoms in
I'nAt(C). So Ak p — ¢. Since p € ET(C) and ¢ € U(C), we have that
IQC F (p — ¢) <> @ for some 9 € U(C). Thus, v € ANU(C) CT. So
I'kp—p. AlsoT'Fp. SoT'k . Since L € U and T is consistent, A’ is also
consistent.

The next two results are basic to the results of the next section:

Proposition 3.4 Let L be a first order language, let C' and D be sets of con-
stants, and let T and A be theories such that (I',C, D, A) is acceptable. Let E
be a set of constants not in L(D), with |E| > |L(D)|, and let p € L(C) be a sen-
tence such that Tt/ ¢. Then there is an acceptable quadruple (I',C’, D' A’)
such that T" is C'-Henkin prime, A’ is D'-Henkin prime, ' C TV, A C A/,
CCC,DCD CDUE, and Tt/ .

Proof. We construct a chain of acceptable quadruples (I'y,, Cp, Dy, Ay),
with I'), I/ ¢, such that for all n € N: T's,,41 and Ag,41 are prime,

Pgpy1 F Jzp(z) = Dspyo F ¢(e) for some e € Cspq0, and
Aspio b Jzp(x) = Aspis b (e) for some e € Ds,3.

Set g =T, Cy =C, Dy = D, and Ag = A. We proceed by induction on
n e N.

Step 3n+1: Suppose (I's,,, Csy,, D3n, Asy) is acceptable, and I's, B ¢. Let
S be the set of all acceptable quadruples (I'*, C3,,, D3,, A*) such that 'z, C
', Az, € A%, and T'* I/ ¢. We define a partial order on S by set inclusion:
<F,03H7D3n7A> j <F/7C3n,D3n,A/> if and only if T g I’ and A g A It is
clear from the definition of acceptable quadruples and compactness that S is
closed under unions of chains. Thus, by Zorn’s Lemma, there is a maximal
element <F3n+1, an, D3y, A3n+1> € S. Set an+1 = (3, and D3n+1 = Ds,.

Suppose T's,1 F ¥ V6. Assume Ty, U{Y} F ¢ and Ts,q1 U {0} F 0.
Then I'sp41 F (’Lﬁ — (p) N (9 — gO). So sy (’(/) V 9) — . So I'spy1 F .
Contradiction. Thus, without loss of generality, we may suppose I's,, 11 U{¢} I/
. Let

I = Th[cSn](anJrl @] {w}) and Al = Th[D3n]<A3n+1 @] (FI N
At(C3n)))-

By the acceptability of (I's;+1, Csn, Dan, Asgnt1), we have As,1NU(Cs,,) C
Isn41 C IV, So by 3.3, the quadruple (I, Cs,,, D3, A’) is acceptable, and so is
in S. By maximality, since I's,11 C TV and Ag,1 € A’ we have I's,, g =TV,
ThU.S7 F3n+1 H w

Suppose A3n+1 FyVvH. Assume F3n+1U(Th[D3n](A3n+1 U{i/)})ﬂ“(Cg,n)) =
¢ and I'sp41 U (Th[D3,](Asp+1 U {0}) NU(Csy,)) F . By compactness, since
U(Csy) is closed under finite conjunctions, there is a p € Th[Ds,](Aszp4+1 U
{Y}NU(Csy,) and a o € Th[Ds,|(Aszp41U{0})NU(Cs,,) such that s, 1U{p} F
pand Tgpp1U{o}t F . SoTs,11 F (p = @)A (60 = ¢). SoT3,41 F (pVo) = .
Also, we have Az, U{Y} F p and Asz,11 U{0} F 0. So Azpy1 F (¥ —
pP) N (0 = ). So Aspi1 E (V) — (pV o). Thus, As,iq F pVo. Since
U(C3y) is closed under finite disjunctions, we have pV o € Az, 1 NU(C3y).
By the acceptability of (I'sn41,Csn, D3n, Asgny1), we have pV o € I'sp 1. So
Tspt1 F . Contradiction. Thus, without loss of generality, we may suppose
I3n41 U (Th[D3,](Azn+1 U{Y}) NU(Cs)) I . Let



I = Th[Cs,](T'3p41 U (Th[D3, ] (Aszps1 U{Y}) NU(C3y,)))  and
A" = Th[D3, ) (Asgpy1 U{} U (I N AL(Csy))).

By 3.3, the quadruple (I, Cs,,, D3,,, A’) is acceptable, and so is in S. By
maximality, since I's,11 € TV and Ag,yp1 € A’) we have Az, = A’. Thus,
AV

Step 3n+2: Suppose (I's;t1,Csnt1, Dant1, Asnt1) is acceptable, and g, 41 1/
@. For every sentence 3zt (z) € I'zny1, let ey, be a new constant in E.
Let E' = {eguy(z) : F29(2) € I'3nq1}. We pick E’ so that |[E\ E'| = |E|. Set
Cspto = Cspy U E’ and D390 = Dspyq U E’. Set

L3ny2 = Th[C3n 2] (341 U {9 (€30y(2)) : Fv(x) € T341}).

Note that for every sentence xtp(z) € I'spy1, there is an e € Csz,19 such
that T'spio F t(e). Assume I's,io F . By compactness, there is a sen-
tence 0(e) := Y1(e1) A ... A Y (en), with e € B and Jz1 (), ..., Jx,(z) €
Isn41, such that T's,q U {f(e)} F ¢. So I'syy1 F 0(e) — ¢. Since e &
C3nt1, we have T'gpp1 F Vx(0(x) = ¢). So T'spy1 B Ix6(x) — . Since
Jzap1(x), ...y 2 (z) € Tgpy1, we have IxO(x) € T'spp1. So I'sppq B . Con-
tradiction. Thus, I'sp12 I/ ¢. We claim Th[Dsp0](Aspt1) NU(Cspia) C
Ispt+2. Suppose p(e) € Th[Dsz,12](Asgn+1) NU(Cspio) with e € E’. Since
e & Ds, 11, we have Az, F Vxp(x) € U(Csp41). By induction hypothesis,
A3n+1 QU(an+1) C I'spya- So Ispp1 F VXp(X). So Tspqo F p(e), which
proves the claim. Set

Aspt2 = Th{D3,42](Aspp1 U (T'3p2 N AL(Cng2)))-

By 3.3, (I'snt2, Csnta, Danta, Asnia) is acceptable.

Step 3n+3: Suppose (I's;t2, Csnt2, D3nta, Asnia) is acceptable, and g, 40 1/
@. For every sentence Jx¢)(x) € Az,ia, let eg,y() be a new constant in E.
Let E' = {eazy(x) : 30Y(x) € Aznq2}. We pick E’ so that |E'\ E'| = |E|. Set
Csn43 = Cspy2 and Dsy,3 = D3pyo U E’. Set I'spy3 =I'3n42, and set

Aspy3 = Th[D3p13](Asznro U {Y(e3p(a)) : F29(2) € Aznyal}).

Note that for every sentence dxt)(x) € Asj,ia, there is an e € D3,13 such
that A3n+3 F ’(/)(6) By the acceptability of <F3n+2,an,+2,D3n+2,A3n+2>,
we have I's;3 N At(Csnq3) C Asnto2 C Agpys. Let IV = Th{Cpq2] (T34 U
(Agpt3NU(Csp42))). We claim IV = T's;, 3. Suppose o € I, By compactness,
and since U(C3y,42) is closed under finite conjunctions, there is a p € Asp,13N
U(C3p42) such that Tz, 2U{p} F 0. By compactness again, there is a sentence
0(e) :=1(e1) A ... ANpp(en), with e € E' and Jzpi(x), ..., Iz, (z) € Azpia,
such that As,4o U{0(e)} F p. Since e € Ds,12 2 Csp19, € does not appear
in Agpio orin p. So Agpio U {3x0(x)} F p. Since Ix0(x) € Aszpia, we have
Aspi2 b p. By induction hypothesis, p € Asz,10 NU(Cspp2) C Tappo. But we
also have 'y F p — 0. So T'spia b o. So IV C T'spia = I'spas, and the
claim is proven. It is easy to see that As,i3 NU(C3pa3) C TV = I'zpys. So
(3043, C3n43, D3ny3, Azny3) is acceptable.

This completes the induction on n € N. Set IV = T, ¢’ = JCh,
D' =D, and A’ = JA,,. By compactness, I is C’-Henkin prime, A’ is
D’-Henkin prime, and IV I/ ¢.

It is useful to note that if (I', C, D, A) is an acceptable quadruple in which
T is already C-Henkin prime, then the construction used in the proof of Propo-
sition 3.4 can easily be modified to yield an acceptable quadruple (I, C, D', A’)



such that A’ is D’-Henkin prime, A C A’, and D C D’. This is accomplished
by letting I';, = I' and C,, = C for all n in the chain of acceptable quadruples,
and by skipping step 3n+2.

Proposition 3.5 Let L be a first order language, let C' and D be sets of con-
stants, and let T and A be theories such that (I',C, D, A) is acceptable, T' is
C-Henkin prime, and A is D-Henkin prime. Then there are rooted Kripke
models A and B, with A C B, such that

AL & Ty, foraleel(C), and
Bl & Ak, forallpeL(D).

Proof. Let X be a set of new constants such that |X| > |£(D)|. Let C be
the following poset category: The nodes of C are all quadruples (IV,C’, D', A’)
with T C IV, C CC', D CD',and A C A’, where IV is a consistent theory
over L£(C"), A’ is a consistent theory over £L(D'), C' C D' C DUX, |D'| <
|£(D)|, and | X \ D'| = |X|. The order on C is defined by (I'',C’", D', A") <
(07, C" D", A") if and only if I' C I”, ¢ C C”, D' C D", and A’ C A”.
Let B C C be the poset category of all quadruples (IV,C’, D', A’} in C such
that I is a C’'-Henkin prime theory and A’ is a D’-Henkin prime theory. We
define a Kripke model B : B — M(L) by:

B crpray = D'/ =, wherea=0b ifand only if A'Fa=10
%<F’,C’,D’,A’> ': 2 = AI l_ @, fOI' all (2] S At(Dl)
Bf: B, — B is defined by Bf(a®:) = a®i.

Let A C B be the poset category of all acceptable quadruples in B. We
define a Kripke model 2 : A — M(L) by:

A crproay = C'/ =, wherea=0b if and only if T"Fa =10
m(FI,C/,D’,A/> ': ® = PI = @, for all [%2) c At(cl)
Af : A — A; is defined by 2Af(a¥) = a®.

It is straightforward to verify that 2 and B are Kripke models, and that
2A C B. Also, 2 and B are rooted, with the same root ic = (I',C, D, A) €
|A| C |B|. We claim:

For all i = (I",C",D',A’) € |A| and p € L(C"), ilF* ¢ &

I+, and
For all i = (I",C'", D', A’ € |B| and ¢ € L(D"), ilF? ¢ <«
A .

One can prove the second assertion by making only trivial modifications to
the proof of 2.2. This proof is left to the reader. We prove the first assertion.

Let ¢ = (I",C", D', A’) € |A|. The proof is by induction on the complexity
of ¢ € L(C"). We prove only the difficult cases (V and —).

Suppose p ;=1 — O and I" F ¢ — 0. Let j = (I, C”, D", A”) € |A| be
such that i < j, and suppose j [F® 9. By induction hypothesis, I I- v. Since
I CI”, we have I F¢p — 6. So I I 6. So by induction hypothesis again,
G IF% 9. Thus, i IF* ¢ — 6. Conversely, suppose ¢ := 1 — 6 and I" ¢ — 6.
Then I"U{¢} ¥ 0. Consider the quadruple (Th[C'|(T"U{¢}),C’, D', A’). Since
(I",C", D', A") is acceptable, we have A'NU(C") C TV C Th[C'|(T" U {¢}). So
by 3.3, (ThC'](I" U {@2}), C", DY, TAIDJ(A' U (TH[C')(T” U {y}) N AK(C")))) is
acceptable. By 3.4, there is an acceptable quadruple j = (I, C”, D", A"} €
|A| such that i < j and I” I/ . By induction hypothesis, j f® 6. Since



¥ € Th[C'|(T" U {¥}) C T, we also have by induction hypothesis j IF* 1. So
G2 ) =5 6. Thus, i F2 4 — 6.

Suppose ¢ := Vap(z) and TV - Ve (x). Let j = (T, C", D", A") € |A]| be
such that ¢ < j, and let a € A;. Since I" C I, we have I' - Vzop(z). SoI'"
Y(a). By induction hypothesis, j IF* t(a). Thus, i IF* Vay(z). Conversely,
suppose ¢ = Vaip(x) and I I/ Vap(z). Let e € X be a new constant. Then
It/ (e). Let C” = C'U{e}, and let D" = D’'U{e}. Let IV = Th[C"](I""), and
let A” = Th[D"](A’). Consider the quadruple (I'";C"”, D", A"). Let 0(c,e) €
A" NU(C"). Then A" | (c,e). So A’ - Vz0(c, z), where Vz0(c,z) € U(C").
Since (I'V,C’, D', A’) is acceptable, we have Vz0(c,z) € A'NU(C") C T'. So
I" - Vz0(c,z). Thus, I” F O(c,e). So O(c,e) € T”. So A" NnU(C") C T".
By 3.3, (I, C", D", Th[D"](A" U (I N At(C")))) is acceptable. By 3.4, there
is an acceptable quadruple j = (I, C" D", A"") € |A| such that i <X j
and I I/ 1(e). By induction hypothesis, j IF® 1(e), where e € A;. Thus,
i P V().

The other cases are easier. The Henkin property will be used in the 3 case,
and the prime property will be used in the V case.

Since ig = (I', C, D, A) € |A| C |B|, we have

igIF* ¢ < Tk, forall p€ L£(C), and
igIF? ¢ & Ak, forall p€ L(D).

This completes the proof. -

4 Preservation and Model Consistency

There is a well-known classical preservation theorem which states that a clas-
sical theory A D I' is axiomatizable by universal sentences over I if and only
if A is preserved under I'-submodels. That is, a classical theory A D IT' is ax-
iomatizable by universal sentences over I' if and only if for all classical models
AET and B = A, if A C B, then A = A. Our main result is a direct
analogue of this theorem, with our notions of universal sentence and Kripke
submodel replacing the classical notions. The theorem below holds generally
for intuitionistic theories, and in the case where I' contains the law of excluded
middle as an axiom schema (i.e., Vx(¢ V =) for all formulas ¢ and variables
x), it implies the classical theorem.

Theorem 4.1 Let T' C A be intuitionistic theories over a language L. Then
A is axiomatizable by universal sentences over I' if and only if A is preserved
under I'-Kripke submodels.

Proof. (=) See 3.1.

(<) Suppose that A is not axiomatizable by universal sentences over T.
Consider the quadruple (Th(I' U (A NU)),a,a,A). It is obvious that this
quadruple is acceptable. Also, since A is not axiomatizable by universal sen-
tences over I, there is a sentence ¢ € A such that Th(I'U(ANU)) ¥ . So by
3.4, there is an acceptable quadruple (I, C’, D', A’) such that I is C’-Henkin
prime, A’ is D’-Henkin prime, Th(TU (ANU)) CTV, AC A’ and I'" I/ ¢. By
3.5, there are rooted Kripke models 2 and 98 with 2 C 8 such that A I ¢ if
and only if TV ¢ and B I ¢ if and only if A’ F 4. So A I ¢. Thus, we have
AFTCT, AP A, BIFACA' and A C B. So A is not preserved under
I'-Kripke submodels.



Note that the classical theorem is an easy consequence of Theorem 4.1 and
the following two lemmas. As in [5], we denote the set of classically valid
sentences by CQC.

Lemma 4.2 Let 2 be a Kripke model over a language L. Then 2 IF CQC if
and only if for alli € |A| and all sentences ¢ € L(A;), i IF* ¢ < 2A; = .

Proof. Left to the reader. -

Lemma 4.3 Let I' and A be theories such that CQC C I' C A. Then A
is preserved under I'-Kripke submodels if and only if A is preserved under
classical T'-submodels.

Proof. (=) Since a classical model can be viewed as a one-node Kripke
model, this direction is obvious.

(<) Suppose CQC C T' C A, and A is preserved under classical T-
submodels. Let 2 IF T" and B IF A be Kripke models such that 21 C 8.
Since A IF CQC and B I CQC, we have A; =T for all i € |A| and B, = A
for all j € |BJ. Since A; C B; for all i € |A|, we have by assumption 2; = A
for all i € |A|. So, since A I+ CQC, i IF* A for all i € |A|. So AI- A. So A is
preserved under I'-Kripke submodels.

There is another classical result involving models and universal theories,
which states that if I' and A are classical theories, then the universal fragment
of A is contained in the universal fragment of I" if and only if every model of
T" is contained in a model of A, in which case A is said to be model-consistent
relative to I'. So two theories are model-consistent relative to each other if
and only if they have the same universal fragment. To state our next result,
we need a definition. In the following, we will write (2(,r) to denote a rooted
Kripke model with root r.

Definition 4.4 Let (2, r) be a rooted Kripke model. Then Th(2(,r) = {p €
L(A) - A=} If (A, r) and (B, s) are rooted Kripke models, we say that
(2A,7r) and (B, s) are strongly equivalent, (A,r) ~ (B,s), if Th(>A,r) =
Th(B, s).

If (A,r) and (*B,s) are rooted Kripke models and Th(,r) = Th(B,s),
then, by the definition of forcing, Th(2,) N At(A,) = Th(B,) N At(Bs). So
it (A, r) ~ (B, s), then the root structures 2, and B, are isomorphic in the
classical sense.

We prove an analogue of the classical model-consistency result for intu-
itionistic logic, using our notions of submodel and universal sentence: If I' and
A are intuitionistic theories, then the universal fragment of A is contained in
the universal fragment of I' if and only if every rooted Kripke model of I' is
strongly equivalent to a submodel of a rooted Kripke model of A. First we
need the following lemma, which is a converse of Proposition 2.2.

Lemma 4.5 Let (,7) be a rooted Kripke model. Then Th(,r) is an A,-
Henkin prime theory.

Proof. This follows directly from the definition of forcing in a rooted Kripke
model. (See [2], Section 5.4.) -
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Theorem 4.6 Let I" and A be intuitionistic theories over a language L. Then
ANU CT if and only if for every rooted Kripke model (2, r) |- T' there are
rooted Kripke models (A',r") and (B,s) - A such that (A,r) ~ (A, 1) C
(B, s).

Proof. (=) Suppose ANU C I'. Let (A,7) IF T be a rooted Kripke
model. Then I'" = Th(2,r) is an A,-Henkin prime theory over £(A4,), and
Th[A,](T') C I. By 3.3, since Th[A,](A) NU(A,) C Th[A,](T') C IV, the
quadruple (I, A,, A, Th[A,](A U (IV N At(A,)))) is acceptable. Since I' is
already A,-Henkin prime, the modified construction discussed after the proof of
3.4 yields an acceptable quadruple (I, A,., D', A’), where A, C D', Th[A,](AU
(I"'N At(4,))) € A’, and A’ is D’-Henkin prime. By 3.5, there are rooted
Kripke models (',7") C (B, s) such that Th(2,»’) = I" = Th(2,r), and
(%B,5) IF A’ D A.

(<) Let (%, r) IF T be a rooted Kripke model. By hypothesis, there are
rooted Kripke models (,7') and (B,s) |- A such that (A,7) ~ (A',r") C
(%B,s). Since universal sentences are preserved under Kripke submodels, we
have (A',7') IF ANU. So also (A,r) IF ANU. Thus, by the completeness of
rooted Kripke models for intuitionistic logic, ' F ANU.

In the case where every Kripke model consists of a single node with only
the identity morphism, Theorem 4.6 reduces to the classical result for model-
consistent theories.
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