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Abstract

We define two notions for intuitionistic predicate logic: that of a
submodel of a Kripke model, and that of a universal sentence. We then
prove a corresponding preservation theorem. If a Kripke model is viewed
as a functor from a small category to the category of all classical models
with (homo)morphisms between them, then we define a submodel of a
Kripke model to be a restriction of the original Kripke model to a sub-
category of its domain where every node in the subcategory is mapped
to a classical submodel of the corresponding classical model in the range
of the original Kripke model. We call a sentence universal if it is built
inductively from atoms (including ⊤ and ⊥) using ∧, ∨, ∀, and →, with
the restriction that antecedents of → must be atomic. We prove that
an intuitionistic theory is axiomatized by universal sentences if and only
if it is preserved under Kripke submodels. We also prove the following
analogue of a classical model-consistency theorem: The universal frag-
ment of a theory Γ is contained in the universal fragment of a theory
∆ if and only if every rooted Kripke model of ∆ is strongly equivalent
to a submodel of a rooted Kripke model of Γ. Our notions of Kripke

1Corresponding author.
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submodel and universal sentence are natural in the sense that in the
presence of the rule of excluded middle, they collapse to the classical
notions of submodel and universal sentence.

Mathematics Subject Classification (2000): Primary: 03B20, 03C40;
Secondary: 03C90, 03F50
Keywords: Kripke model, Kripke submodel, universal sentence, intuitionistic
predicate logic.

1 Introduction

In his paper, ”Submodels of Kripke Models” [6], Albert Visser suggests several
different notions of a submodel of a Kripke model for intuitionistic predicate
logic: First, if a Kripke model is viewed as a functor from an arbitrary small
category to the category of all classical models with morphisms between them,
then one might consider a submodel to be a functor defined on the same domain
(category) of the original Kripke model, but where every node is mapped to
a classical submodel of the corresponding classical model in the range of the
original Kripke model. Second, one might consider a submodel to be the
restriction of the original Kripke model (as a functor) to a full subcategory
of its domain. Third, one might consider a submodel to be a combination of
the first and second notions. In [6], Visser chooses the second notion (above),
and proves that an intuitionistic theory is preserved under Kripke submodels
if and only if it is axiomatized by semipositive sentences. The first notion is
considered by Bagheri and Moniri in [1].

When defining notions of Kripke submodel and universal sentence for intu-
itionistic logic, it seems reasonable to demand the following properties: First,
both the notion of submodel and universal sentence should include the classi-
cal notions as special cases and should reduce to them in the case where the
law of excluded middle is included as an axiom schema in the base theory,
in which case intuitionistic predicate logic and classical predicate logic coin-
cide. Second, an intuitionistic theory ∆ ⊇ Γ should be preserved under Kripke
submodels that satisfy a base theory Γ if and only if ∆ is axiomatizable by
universal sentences over Γ. Third, given theories Γ and ∆, it should be the
case that the universal fragment of Γ is contained in the universal fragment of
∆ if and only if every model of ∆ is contained in a model of Γ, in which case
Γ is said to be model-consistent relative to ∆, see [3].

To this end, we define a submodel of a Kripke model to be a restriction
of the original Kripke model (viewed as a functor) to a subcategory of its
domain, but where every node in the subcategory is mapped to a classical
submodel of the corresponding classical model in the range of the original
Kripke model. This notion corresponds to the third suggestion of Visser’s, and
it includes the first and second notions as special cases. In the case where the
law of excluded middle is axiomatized in the base theory, the Kripke models
involved become essentially classical models, in that forcing at a node coincides
with satisfaction in the corresponding classical model, and all morphisms are
elementary embeddings. If such Kripke models are rooted, it follows that the
sentences true in the Kripke model are precisely the sentences classically true
at the root, and in this case our notion of submodel coincides with the classical
notion. We also define a class of universal sentences for intuitionistic predicate
logic that coincides (up to provable equivalence) with the class of Π0

1 sentences
of classical logic in the presence of the law of excluded middle. We call a
sentence universal if it is built inductively from atomic sentences (including
⊤ and ⊥) using ∧, ∨, ∀, and →, with the restriction that antecedents of →
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must be atomic. We prove that a theory is axiomatized by universal sentences
if and only if it is preserved under Kripke submodels. Our proof is based
on Visser’s proof in [6]. We also prove an intuitionistic analogue of a classical
model-consistency theorem, using our notions of universal sentence and Kripke
submodel: Given intuitionistic theories Γ and ∆, the universal fragment of Γ
is contained in the universal fragment of ∆ if and only if every rooted Kripke
model of ∆ is strongly equivalent to a submodel of a rooted Kripke model of
Γ. The notion of strong equivalence is defined in Section 4.

We consider a first order language L to be the set of formulas that can be
built from a symbol set (variables, relation, function, and constant symbols)
using ⊤, ⊥, ∧, ∨, →, ∃, and ∀. In the present paper, we consider only languages
that include = as a binary relation, interpreted as real equality in a model.
Symbols ⊤ and ⊥ are both atoms and nullary connectives. Negation ¬ϕ is
short for ϕ → ⊥, and bi-implication ϕ ↔ ψ is short for (ϕ → ψ) ∧ (ψ →
ϕ). We use the bold font (A) to denote categories, the fraktur font (A) to
denote first order classical models and Kripke models, and the calligraphy
font (A) to denote languages and subsets of languages. In addition, we make
use of the following notational conventions: A list of constant symbols or
variables t1, ..., tn is abbreviated as t. If C is an arbitrary set of constants,
then L(C) is the language L extended by all constants in C. At ⊆ L is the
set of atomic formulas in L. Analogously, At(C) ⊆ L(C) is the set of atomic
formulas in L(C), and so on. Given a classical model A, the domain of A is
denoted A, and L(A) is the language L extended by a new constant for every
element in A. The symbol |= denotes classical satisfaction in a model, and it
is defined for sentences (closed formulas) only. Th(A) = {ϕ ∈ L(A) : A |= ϕ}
is the elementary diagram of A. This notation is convenient, since we can
write Th(A) ∩ L for the complete theory of A over L, Th(A) ∩ At(A) for the
positive atomic diagram of A, and so on. The symbol ⊢ denotes intuitionistic
derivability, and is defined for sentences only. If Γ ⊆ L is a set of sentences,
then Th(Γ) = {ϕ ∈ L : Γ ⊢ ϕ} is the deductive closure of Γ over L. If
C is an arbitrary set of constants and Γ ⊆ L(C) is a set of sentences, then
Th[C](Γ) = {ϕ ∈ L(C) : Γ ⊢ ϕ} is the deductive closure of Γ over L(C).
We consider a theory to be a set of sentences closed under (intuitionistic)
deduction.

2 Kripke Models

Let L be a first order language, and let M(L) be the category of all classical
models for the language L, with all (homo)morphisms between them. That is,
a morphism in this category is a classical homomorphism in the sense of [4] and
[2]. Let A be an arbitrary small category (in practice, A is often taken to be a
small poset category). A Kripke model A is a functor A : A → M(L). So for
every object i ∈ |A|, there is an associated classical model A(i) = Ai in M(L),
and for every arrow f : i → j in A, there is an associated morphism A(f)
= Af : Ai → Aj . Contrary to [5], we interpret the equality predicate as real
equality in each node structure Ai. The existence of a morphism Af : Ai → Aj

means essentially that Aj models the positive atomic diagram of Ai. That is,
for all sentences ϕ(a) ∈ At(Ai) with a ∈ Ai, if Ai |= ϕ(a) then Aj |= ϕ(Af(a)).

Let A : A → M(L) be a Kripke model. For every node i ∈ |A| and for
every sentence ϕ ∈ L(Ai), we define the forcing relation 


A inductively by:

i 
A ϕ ⇔ Ai |= ϕ, for all (atomic) sentences ϕ ∈ At(Ai),
i 
A ϕ ∧ ψ ⇔ i 
A ϕ and i 
A ψ,
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i 
A ϕ ∨ ψ ⇔ i 
A ϕ or i 
A ψ,
i 
A ϕ→ ψ ⇔ for all f : i→ j, if j 
A ϕf then j 
A ψf ,
i 
A ∀xϕ(x) ⇔ for all f : i → j and for all a ∈ Aj , j 


A ϕf (a),
and

i 
A ∃xϕ(x) ⇔ i 
A ϕ(a) for some a ∈ Ai,

where ϕf ∈ L(Aj) is constructed from ϕ ∈ L(Ai) by replacing all constant
symbols a ∈ Ai in ϕ by Af(a) ∈ Aj .

We say that a sentence ϕ ∈ L(Ai) is true at node i ∈ |A| if Ai |= ϕ. We
say that a sentence ϕ ∈ L(Ai) is forced at node i ∈ |A| if i 
A ϕ. We say that
a sentence ϕ ∈ L is forced in the Kripke model A, written A 
 ϕ, if i 
A ϕ for
all i ∈ |A|. If Γ ⊆ L is a set of sentences, then A 
 Γ if and only if A 
 ϕ for
all ϕ ∈ Γ. The Kripke model A is rooted if there exists an i0 ∈ |A| such that
for all i ∈ |A|, there is an f : i0 → i in A. It is easy to verify that sentences
in Kripke models are persistent: that is, for all f : i → j in A and for all
ϕ ∈ L(Ai), if i 


A ϕ then j 

A ϕf . In the case of a rooted Kripke model A

with root i0, we have A 
 ϕ if and only if i0 

A ϕ.

Let C be an arbitrary set of constants. A theory Γ over L(C) is called
prime if for all sentences ϕ,ψ ∈ L(C), we have Γ ⊢ ϕ∨ψ if and only if Γ ⊢ ϕ or
Γ ⊢ ψ. A consistent theory Γ over L(C) is called C-Henkin if for all sentences
∃xϕ(x) ∈ L(C), we have Γ ⊢ ∃xϕ(x) if and only if there is a c ∈ C such that
Γ ⊢ ϕ(c). A theory is called C-Henkin prime if it is both C-Henkin and prime.

The next two results are basic to intuitionistic logic:

Proposition 2.1 Let L be a first order language, let C be a set of constants

not in L, with |C| ≥ |L|, let ϕ ∈ L be a sentence, and let Γ be a theory over

L such that Γ 6⊢ ϕ. Then there is a C-Henkin prime theory Γ′ over L(C) such
that Γ ⊆ Γ′ and Γ′ 6⊢ ϕ.

Proof. See [2], Section 5.3. ⊣

Proposition 2.2 Let L be a first order language, let C be a set of constants,

and let Γ be a C-Henkin prime theory over L(C). Then there is a rooted Kripke

model A over L(C) such that

A 
 ϕ ⇔ Γ ⊢ ϕ, for all ϕ ∈ L(C).

Proof. See [2], Section 5.3. ⊣

3 Kripke Submodels and Universal Sentences

If A : A → M(L) and B : B → M(L) are Kripke models, then A is a submodel

of B if and only if A is a subcategory of B, and for all i ∈ |A|, the structure
Ai is a classical submodel of Bi. That is, A ⊆ B if and only if A ⊆ B and
Ai ⊆ Bi for all i ∈ |A|. We also say that B is an extension of A.

Let L be a first order language. We define the set of universal formulas
U ⊆ L inductively by:

ϕ ∈ At ⇒ ϕ ∈ U ,
ϕ, ψ ∈ U ⇒ ϕ ∧ ψ, ϕ ∨ ψ ∈ U ,
ϕ ∈ At, ψ ∈ U ⇒ ϕ→ ψ ∈ U , and
ϕ ∈ U ⇒ ∀xϕ ∈ U .
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The set of positive existential formulas E+ ⊆ L is the set containing At and
closed under ∧, ∨, and ∃. Following Troelstra and van Dalen [5], we denote
intuitionistic predicate logic by IQC. We note the following:

IQC ⊢ ((ϕ ∧ ψ) → θ) ↔ (ϕ→ (ψ → θ)),
IQC ⊢ ((ϕ ∨ ψ) → θ) ↔ ((ϕ→ θ) ∧ (ψ → θ)), and
IQC ⊢ (∃xϕ(x) → ψ) ↔ ∀x(ϕ(x) → ψ)

(where in the third case, x is not free in ψ). Using these intuitionistic
tautologies, it is easy to see that any sentence of the form ϕ → ψ, where
ϕ ∈ E+ and ψ ∈ U , is provably equivalent (over IQC) to a sentence in U . Also,
in the presence of the law of excluded middle, the set U becomes the set of
classical Π0

1 formulas.
First we prove the following simple result, which is one direction of our

preservation theorem.

Theorem 3.1 Let Γ ⊆ ∆ be intuitionistic theories over a language L, and

suppose that ∆ is axiomatizable by universal sentences over Γ. Then for all

Kripke models A 
 Γ and B 
 ∆, if A ⊆ B, then A 
 ∆. That is, ∆ is

preserved under Γ-Kripke submodels.

Proof. Suppose that ∆ is axiomatized by universal sentences over Γ. Let
A : A → M(L) andB : B → M(L) be Kripke models such that A 
 Γ, B 
 ∆,
and A ⊆ B. It suffices to show that A 
 ∆ ∩ U . This will follow if we show
that for all i ∈ |A| and for all sentences ϕ ∈ U(Ai), if i 


B ϕ then i 
A ϕ.
The proof is by induction on the complexity of ϕ, for all i simultaneously. Let
i ∈ |A|, and let ϕ ∈ U(Ai) be a sentence. Suppose ϕ ∈ At(Ai) is atomic,
and i 
B ϕ. Since Ai ⊆ Bi, we have ϕ ∈ At(Ai) ⊆ At(Bi). So Bi |= ϕ.
Thus, since ϕ is quantifier free, and Ai ⊆ Bi, we have Ai |= ϕ. So i 
A ϕ.
The induction steps for ϕ := ψ ∧ θ and ϕ := ψ ∨ θ are obvious. Suppose
i 
B ψ → θ, where ψ ∈ At(Ai). Let g : i → j be in A. Suppose j 


A ψg.
Since ψg ∈ At(Aj), we have Aj |= ψg. Since Aj ⊆ Bj , we have Bj |= ψg.
Since Aj ⊆ Bj , we have ψg ∈ At(Aj) ⊆ At(Bj). So j 


B ψg. Since A ⊆ B,
g : i → j is in B. Thus, since i 
B ψ → θ and j 


B ψg, we have j 

B θg.

So by induction hypothesis, j 

A θg. So for all g : i → j in A, if j 


A ψg

then j 

A θg. Thus, i 
A ψ → θ. Now suppose i 
B ∀xϕ(x). Let g : i → j

be in A. Let a ∈ Aj ⊆ Bj . Since A ⊆ B, g : i → j is in B. So j 

B ϕg(a).

By induction hypothesis, we have j 

A ϕg(a). So for all g : i → j in A and

for all a ∈ Aj , we have j 

A ϕg(a). Thus, i 
A ∀xϕ(x). This completes the

induction on the complexity of ϕ. ⊣

Next we prove a lemma that is used heavily in the subsequent result. First
we give a definition:

Definition 3.2 Let L be a first order language, let C and D be sets of con-

stants with C ⊆ D, let Γ be a consistent theory over L(C) and let ∆ be a

consistent theory over L(D). The quadruple 〈Γ, C,D,∆〉 is called acceptable
if Γ ∩ At(C) ⊆ ∆ and ∆ ∩ U(C) ⊆ Γ.

Lemma 3.3 Let L be a first order language, let C and D be sets of constants

with C ⊆ D, let Γ be a consistent theory over L(C) and let ∆ be a consistent

theory over L(D). If ∆ ∩ U(C) ⊆ Γ, then the quadruple 〈Γ, C,D,Th[D](∆ ∪
(Γ ∩ At(C)))〉 is acceptable.
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Proof. Let ∆′ = Th[D](∆∪ (Γ∩At(C))). Obviously, Γ∩At(C) ⊆ ∆′. We
must show that ∆′∩U(C) ⊆ Γ. Let ϕ ∈ ∆′∩U(C). Then ∆∪(Γ∩At(C)) ⊢ ϕ.
By compactness, we have ∆ ∪ {ρ} ⊢ ϕ, where ρ is a conjunction of atoms in
Γ ∩ At(C). So ∆ ⊢ ρ → ϕ. Since ρ ∈ E+(C) and ϕ ∈ U(C), we have that
IQC ⊢ (ρ → ϕ) ↔ ψ for some ψ ∈ U(C). Thus, ψ ∈ ∆ ∩ U(C) ⊆ Γ. So
Γ ⊢ ρ → ϕ. Also Γ ⊢ ρ. So Γ ⊢ ϕ. Since ⊥ ∈ U and Γ is consistent, ∆′ is also
consistent. ⊣

The next two results are basic to the results of the next section:

Proposition 3.4 Let L be a first order language, let C and D be sets of con-

stants, and let Γ and ∆ be theories such that 〈Γ, C,D,∆〉 is acceptable. Let E
be a set of constants not in L(D), with |E| ≥ |L(D)|, and let ϕ ∈ L(C) be a sen-

tence such that Γ 6⊢ ϕ. Then there is an acceptable quadruple 〈Γ′, C ′, D′,∆′〉
such that Γ′ is C ′-Henkin prime, ∆′ is D′-Henkin prime, Γ ⊆ Γ′, ∆ ⊆ ∆′,

C ⊆ C ′, D ⊆ D′ ⊆ D ∪ E, and Γ′ 6⊢ ϕ.

Proof. We construct a chain of acceptable quadruples 〈Γn, Cn, Dn,∆n〉,
with Γn 6⊢ ϕ, such that for all n ∈ N: Γ3n+1 and ∆3n+1 are prime,

Γ3n+1 ⊢ ∃xψ(x) ⇒ Γ3n+2 ⊢ ψ(e) for some e ∈ C3n+2, and
∆3n+2 ⊢ ∃xψ(x) ⇒ ∆3n+3 ⊢ ψ(e) for some e ∈ D3n+3.

Set Γ0 = Γ, C0 = C, D0 = D, and ∆0 = ∆. We proceed by induction on
n ∈ N.

Step 3n+1: Suppose 〈Γ3n, C3n, D3n,∆3n〉 is acceptable, and Γ3n 6⊢ ϕ. Let
S be the set of all acceptable quadruples 〈Γ∗, C3n, D3n,∆

∗〉 such that Γ3n ⊆
Γ∗,∆3n ⊆ ∆∗, and Γ∗ 6⊢ ϕ. We define a partial order on S by set inclusion:
〈Γ, C3n, D3n,∆〉 � 〈Γ′, C3n, D3n,∆

′〉 if and only if Γ ⊆ Γ′ and ∆ ⊆ ∆′. It is
clear from the definition of acceptable quadruples and compactness that S is
closed under unions of chains. Thus, by Zorn’s Lemma, there is a maximal
element 〈Γ3n+1, C3n, D3n,∆3n+1〉 ∈ S. Set C3n+1 = C3n and D3n+1 = D3n.

Suppose Γ3n+1 ⊢ ψ ∨ θ. Assume Γ3n+1 ∪ {ψ} ⊢ ϕ and Γ3n+1 ∪ {θ} ⊢ ϕ.
Then Γ3n+1 ⊢ (ψ → ϕ) ∧ (θ → ϕ). So Γ3n+1 ⊢ (ψ ∨ θ) → ϕ. So Γ3n+1 ⊢ ϕ.
Contradiction. Thus, without loss of generality, we may suppose Γ3n+1∪{ψ} 6⊢
ϕ. Let

Γ′ = Th[C3n](Γ3n+1 ∪ {ψ}) and ∆′ = Th[D3n](∆3n+1 ∪ (Γ′ ∩
At(C3n))).

By the acceptability of 〈Γ3n+1, C3n, D3n,∆3n+1〉, we have ∆3n+1∩U(C3n) ⊆
Γ3n+1 ⊆ Γ′. So by 3.3, the quadruple 〈Γ′, C3n, D3n,∆

′〉 is acceptable, and so is
in S. By maximality, since Γ3n+1 ⊆ Γ′ and ∆3n+1 ⊆ ∆′, we have Γ3n+1 = Γ′.
Thus, Γ3n+1 ⊢ ψ.

Suppose ∆3n+1 ⊢ ψ∨θ. Assume Γ3n+1∪(Th[D3n](∆3n+1∪{ψ})∩U(C3n)) ⊢
ϕ and Γ3n+1 ∪ (Th[D3n](∆3n+1 ∪ {θ}) ∩ U(C3n)) ⊢ ϕ. By compactness, since
U(C3n) is closed under finite conjunctions, there is a ρ ∈ Th[D3n](∆3n+1 ∪
{ψ})∩U(C3n) and a σ ∈ Th[D3n](∆3n+1∪{θ})∩U(C3n) such that Γ3n+1∪{ρ} ⊢
ϕ and Γ3n+1∪{σ} ⊢ ϕ. So Γ3n+1 ⊢ (ρ→ ϕ)∧(σ → ϕ). So Γ3n+1 ⊢ (ρ∨σ) → ϕ.
Also, we have ∆3n+1 ∪ {ψ} ⊢ ρ and ∆3n+1 ∪ {θ} ⊢ σ. So ∆3n+1 ⊢ (ψ →
ρ) ∧ (θ → σ). So ∆3n+1 ⊢ (ψ ∨ θ) → (ρ ∨ σ). Thus, ∆3n+1 ⊢ ρ ∨ σ. Since
U(C3n) is closed under finite disjunctions, we have ρ ∨ σ ∈ ∆3n+1 ∩ U(C3n).
By the acceptability of 〈Γ3n+1, C3n, D3n,∆3n+1〉, we have ρ ∨ σ ∈ Γ3n+1. So
Γ3n+1 ⊢ ϕ. Contradiction. Thus, without loss of generality, we may suppose
Γ3n+1 ∪ (Th[D3n](∆3n+1 ∪ {ψ}) ∩ U(C3n)) 6⊢ ϕ. Let
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Γ′ = Th[C3n](Γ3n+1 ∪ (Th[D3n](∆3n+1 ∪ {ψ}) ∩ U(C3n))) and
∆′ = Th[D3n](∆3n+1 ∪ {ψ} ∪ (Γ′ ∩ At(C3n))).

By 3.3, the quadruple 〈Γ′, C3n, D3n,∆
′〉 is acceptable, and so is in S. By

maximality, since Γ3n+1 ⊆ Γ′ and ∆3n+1 ⊆ ∆′, we have ∆3n+1 = ∆′. Thus,
∆3n+1 ⊢ ψ.

Step 3n+2: Suppose 〈Γ3n+1, C3n+1, D3n+1,∆3n+1〉 is acceptable, and Γ3n+1 6⊢
ϕ. For every sentence ∃xψ(x) ∈ Γ3n+1, let e∃xψ(x) be a new constant in E.
Let E′ = {e∃xψ(x) : ∃xψ(x) ∈ Γ3n+1}. We pick E′ so that |E \ E′| = |E|. Set
C3n+2 = C3n+1 ∪ E

′ and D3n+2 = D3n+1 ∪ E
′. Set

Γ3n+2 = Th[C3n+2](Γ3n+1 ∪ {ψ(e∃xψ(x)) : ∃xψ(x) ∈ Γ3n+1}).

Note that for every sentence ∃xψ(x) ∈ Γ3n+1, there is an e ∈ C3n+2 such
that Γ3n+2 ⊢ ψ(e). Assume Γ3n+2 ⊢ ϕ. By compactness, there is a sen-
tence θ(e) := ψ1(e1) ∧ ... ∧ ψm(em), with e ∈ E′ and ∃xψ1(x), ..., ∃xψm(x) ∈
Γ3n+1, such that Γ3n+1 ∪ {θ(e)} ⊢ ϕ. So Γ3n+1 ⊢ θ(e) → ϕ. Since e 6∈
C3n+1, we have Γ3n+1 ⊢ ∀x(θ(x) → ϕ). So Γ3n+1 ⊢ ∃xθ(x) → ϕ. Since
∃xψ1(x), ..., ∃xψm(x) ∈ Γ3n+1, we have ∃xθ(x) ∈ Γ3n+1. So Γ3n+1 ⊢ ϕ. Con-
tradiction. Thus, Γ3n+2 6⊢ ϕ. We claim Th[D3n+2](∆3n+1) ∩ U(C3n+2) ⊆
Γ3n+2. Suppose ρ(e) ∈ Th[D3n+2](∆3n+1) ∩ U(C3n+2) with e ∈ E′. Since
e 6∈ D3n+1, we have ∆3n+1 ⊢ ∀xρ(x) ∈ U(C3n+1). By induction hypothesis,
∆3n+1 ∩ U(C3n+1) ⊆ Γ3n+1. So Γ3n+1 ⊢ ∀xρ(x). So Γ3n+2 ⊢ ρ(e), which
proves the claim. Set

∆3n+2 = Th[D3n+2](∆3n+1 ∪ (Γ3n+2 ∩ At(C3n+2))).

By 3.3, 〈Γ3n+2, C3n+2, D3n+2,∆3n+2〉 is acceptable.
Step 3n+3: Suppose 〈Γ3n+2, C3n+2, D3n+2,∆3n+2〉 is acceptable, and Γ3n+2 6⊢

ϕ. For every sentence ∃xψ(x) ∈ ∆3n+2, let e∃xψ(x) be a new constant in E.
Let E′ = {e∃xψ(x) : ∃xψ(x) ∈ ∆3n+2}. We pick E′ so that |E \ E′| = |E|. Set
C3n+3 = C3n+2 and D3n+3 = D3n+2 ∪ E

′. Set Γ3n+3 = Γ3n+2, and set

∆3n+3 = Th[D3n+3](∆3n+2 ∪ {ψ(e∃xψ(x)) : ∃xψ(x) ∈ ∆3n+2}).

Note that for every sentence ∃xψ(x) ∈ ∆3n+2, there is an e ∈ D3n+3 such
that ∆3n+3 ⊢ ψ(e). By the acceptability of 〈Γ3n+2, C3n+2, D3n+2,∆3n+2〉,
we have Γ3n+3 ∩ At(C3n+3) ⊆ ∆3n+2 ⊆ ∆3n+3. Let Γ′ = Th[C3n+2](Γ3n+2 ∪
(∆3n+3∩U(C3n+2))). We claim Γ′ = Γ3n+3. Suppose σ ∈ Γ′. By compactness,
and since U(C3n+2) is closed under finite conjunctions, there is a ρ ∈ ∆3n+3 ∩
U(C3n+2) such that Γ3n+2∪{ρ} ⊢ σ. By compactness again, there is a sentence
θ(e) := ψ1(e1)∧ ...∧ψm(em), with e ∈ E′ and ∃xψ1(x), ..., ∃xψm(x) ∈ ∆3n+2,
such that ∆3n+2 ∪ {θ(e)} ⊢ ρ. Since e 6∈ D3n+2 ⊇ C3n+2, e does not appear
in ∆3n+2 or in ρ. So ∆3n+2 ∪ {∃xθ(x)} ⊢ ρ. Since ∃xθ(x) ∈ ∆3n+2, we have
∆3n+2 ⊢ ρ. By induction hypothesis, ρ ∈ ∆3n+2 ∩ U(C3n+2) ⊆ Γ3n+2. But we
also have Γ3n+2 ⊢ ρ → σ. So Γ3n+2 ⊢ σ. So Γ′ ⊆ Γ3n+2 = Γ3n+3, and the
claim is proven. It is easy to see that ∆3n+3 ∩ U(C3n+3) ⊆ Γ′ = Γ3n+3. So
〈Γ3n+3, C3n+3, D3n+3,∆3n+3〉 is acceptable.

This completes the induction on n ∈ N. Set Γ′ =
⋃
Γn, C

′ =
⋃
Cn,

D′ =
⋃
Dn, and ∆′ =

⋃
∆n. By compactness, Γ′ is C ′-Henkin prime, ∆′ is

D′-Henkin prime, and Γ′ 6⊢ ϕ. ⊣

It is useful to note that if 〈Γ, C,D,∆〉 is an acceptable quadruple in which
Γ is already C-Henkin prime, then the construction used in the proof of Propo-
sition 3.4 can easily be modified to yield an acceptable quadruple 〈Γ, C,D′,∆′〉

7



such that ∆′ is D′-Henkin prime, ∆ ⊆ ∆′, and D ⊆ D′. This is accomplished
by letting Γn = Γ and Cn = C for all n in the chain of acceptable quadruples,
and by skipping step 3n+2.

Proposition 3.5 Let L be a first order language, let C and D be sets of con-

stants, and let Γ and ∆ be theories such that 〈Γ, C,D,∆〉 is acceptable, Γ is

C-Henkin prime, and ∆ is D-Henkin prime. Then there are rooted Kripke

models A and B, with A ⊆ B, such that

A 
 ϕ ⇔ Γ ⊢ ϕ, for all ϕ ∈ L(C), and

B 
 ϕ ⇔ ∆ ⊢ ϕ, for all ϕ ∈ L(D).

Proof. Let X be a set of new constants such that |X| ≥ |L(D)|. Let C be
the following poset category: The nodes of C are all quadruples 〈Γ′, C ′, D′,∆′〉
with Γ ⊆ Γ′, C ⊆ C ′, D ⊆ D′, and ∆ ⊆ ∆′, where Γ′ is a consistent theory
over L(C ′), ∆′ is a consistent theory over L(D′), C ′ ⊆ D′ ⊆ D ∪ X, |D′| ≤
|L(D)|, and |X \ D′| = |X|. The order on C is defined by 〈Γ′, C ′, D′,∆′〉 �
〈Γ′′, C ′′, D′′,∆′′〉 if and only if Γ′ ⊆ Γ′′, C ′ ⊆ C ′′, D′ ⊆ D′′, and ∆′ ⊆ ∆′′.
Let B ⊆ C be the poset category of all quadruples 〈Γ′, C ′, D′,∆′〉 in C such
that Γ′ is a C ′-Henkin prime theory and ∆′ is a D′-Henkin prime theory. We
define a Kripke model B : B → M(L) by:

B〈Γ′,C′,D′,∆′〉 = D′/ ≡, where a ≡ b if and only if ∆′ ⊢ a = b
B〈Γ′,C′,D′,∆′〉 |= ϕ ⇔ ∆′ ⊢ ϕ, for all ϕ ∈ At(D′)

Bf : Bi → Bj is defined by Bf(aBi) = aBj .

Let A ⊆ B be the poset category of all acceptable quadruples in B. We
define a Kripke model A : A → M(L) by:

A〈Γ′,C′,D′,∆′〉 = C ′/ ≡, where a ≡ b if and only if Γ′ ⊢ a = b
A〈Γ′,C′,D′,∆′〉 |= ϕ ⇔ Γ′ ⊢ ϕ, for all ϕ ∈ At(C ′)

Af : Ai → Aj is defined by Af(aAi) = aAj .

It is straightforward to verify that A and B are Kripke models, and that
A ⊆ B. Also, A and B are rooted, with the same root i0 = 〈Γ, C,D,∆〉 ∈
|A| ⊆ |B|. We claim:

For all i = 〈Γ′, C ′, D′,∆′〉 ∈ |A| and ϕ ∈ L(C ′), i 
A ϕ ⇔
Γ′ ⊢ ϕ, and

For all i = 〈Γ′, C ′, D′,∆′〉 ∈ |B| and ϕ ∈ L(D′), i 
B ϕ ⇔
∆′ ⊢ ϕ.

One can prove the second assertion by making only trivial modifications to
the proof of 2.2. This proof is left to the reader. We prove the first assertion.

Let i = 〈Γ′, C ′, D′,∆′〉 ∈ |A|. The proof is by induction on the complexity
of ϕ ∈ L(C ′). We prove only the difficult cases (∀ and →).

Suppose ϕ := ψ → θ and Γ′ ⊢ ψ → θ. Let j = 〈Γ′′, C ′′, D′′,∆′′〉 ∈ |A| be
such that i � j, and suppose j 
A ψ. By induction hypothesis, Γ′′ ⊢ ψ. Since
Γ′ ⊆ Γ′′, we have Γ′′ ⊢ ψ → θ. So Γ′′ ⊢ θ. So by induction hypothesis again,
j 
A θ. Thus, i 
A ψ → θ. Conversely, suppose ϕ := ψ → θ and Γ′ 6⊢ ψ → θ.
Then Γ′∪{ψ} 6⊢ θ. Consider the quadruple 〈Th[C ′](Γ′∪{ψ}), C ′, D′,∆′〉. Since
〈Γ′, C ′, D′,∆′〉 is acceptable, we have ∆′ ∩ U(C ′) ⊆ Γ′ ⊆ Th[C ′](Γ′ ∪ {ψ}). So
by 3.3, 〈Th[C ′](Γ′ ∪ {ψ}), C ′, D′,Th[D′](∆′ ∪ (Th[C ′](Γ′ ∪ {ψ})∩At(C ′)))〉 is
acceptable. By 3.4, there is an acceptable quadruple j = 〈Γ′′, C ′′, D′′,∆′′〉 ∈
|A| such that i � j and Γ′′ 6⊢ θ. By induction hypothesis, j 6
A θ. Since
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ψ ∈ Th[C ′](Γ′ ∪ {ψ}) ⊆ Γ′′, we also have by induction hypothesis j 
A ψ. So
j 6
A ψ → θ. Thus, i 6
A ψ → θ.

Suppose ϕ := ∀xψ(x) and Γ′ ⊢ ∀xψ(x). Let j = 〈Γ′′, C ′′, D′′,∆′′〉 ∈ |A| be
such that i � j, and let a ∈ Aj . Since Γ′ ⊆ Γ′′, we have Γ′′ ⊢ ∀xψ(x). So Γ′′ ⊢
ψ(a). By induction hypothesis, j 


A ψ(a). Thus, i 
A ∀xψ(x). Conversely,
suppose ϕ := ∀xψ(x) and Γ′ 6⊢ ∀xψ(x). Let e ∈ X be a new constant. Then
Γ′ 6⊢ ψ(e). Let C ′′ = C ′∪{e}, and letD′′ = D′∪{e}. Let Γ′′ = Th[C ′′](Γ′), and
let ∆′′ = Th[D′′](∆′). Consider the quadruple 〈Γ′′, C ′′, D′′,∆′′〉. Let θ(c, e) ∈
∆′′ ∩ U(C ′′). Then ∆′′ ⊢ θ(c, e). So ∆′ ⊢ ∀zθ(c, z), where ∀zθ(c, z) ∈ U(C ′).
Since 〈Γ′, C ′, D′,∆′〉 is acceptable, we have ∀zθ(c, z) ∈ ∆′ ∩ U(C ′) ⊆ Γ′. So
Γ′ ⊢ ∀zθ(c, z). Thus, Γ′′ ⊢ θ(c, e). So θ(c, e) ∈ Γ′′. So ∆′′ ∩ U(C ′′) ⊆ Γ′′.
By 3.3, 〈Γ′′, C ′′, D′′,Th[D′′](∆′′ ∪ (Γ′′ ∩At(C ′′)))〉 is acceptable. By 3.4, there
is an acceptable quadruple j = 〈Γ′′′, C ′′′, D′′′,∆′′′〉 ∈ |A| such that i � j
and Γ′′′ 6⊢ ψ(e). By induction hypothesis, j 6
A ψ(e), where e ∈ Aj . Thus,
i 6
A ∀xψ(x).

The other cases are easier. The Henkin property will be used in the ∃ case,
and the prime property will be used in the ∨ case.

Since i0 = 〈Γ, C,D,∆〉 ∈ |A| ⊆ |B|, we have

i0 

A ϕ ⇔ Γ ⊢ ϕ, for all ϕ ∈ L(C), and

i0 

B ϕ ⇔ ∆ ⊢ ϕ, for all ϕ ∈ L(D).

This completes the proof. ⊣

4 Preservation and Model Consistency

There is a well-known classical preservation theorem which states that a clas-
sical theory ∆ ⊇ Γ is axiomatizable by universal sentences over Γ if and only
if ∆ is preserved under Γ-submodels. That is, a classical theory ∆ ⊇ Γ is ax-
iomatizable by universal sentences over Γ if and only if for all classical models
A |= Γ and B |= ∆, if A ⊆ B, then A |= ∆. Our main result is a direct
analogue of this theorem, with our notions of universal sentence and Kripke
submodel replacing the classical notions. The theorem below holds generally
for intuitionistic theories, and in the case where Γ contains the law of excluded
middle as an axiom schema (i.e., ∀x(ϕ ∨ ¬ϕ) for all formulas ϕ and variables
x), it implies the classical theorem.

Theorem 4.1 Let Γ ⊆ ∆ be intuitionistic theories over a language L. Then

∆ is axiomatizable by universal sentences over Γ if and only if ∆ is preserved

under Γ-Kripke submodels.

Proof. (⇒) See 3.1.
(⇐) Suppose that ∆ is not axiomatizable by universal sentences over Γ.

Consider the quadruple 〈Th(Γ ∪ (∆ ∩ U)),∅,∅,∆〉. It is obvious that this
quadruple is acceptable. Also, since ∆ is not axiomatizable by universal sen-
tences over Γ, there is a sentence ϕ ∈ ∆ such that Th(Γ∪ (∆∩U)) 6⊢ ϕ. So by
3.4, there is an acceptable quadruple 〈Γ′, C ′, D′,∆′〉 such that Γ′ is C ′-Henkin
prime, ∆′ is D′-Henkin prime, Th(Γ ∪ (∆ ∩ U)) ⊆ Γ′, ∆ ⊆ ∆′ and Γ′ 6⊢ ϕ. By
3.5, there are rooted Kripke models A and B with A ⊆ B such that A 
 ψ if
and only if Γ′ ⊢ ψ and B 
 ψ if and only if ∆′ ⊢ ψ. So A 6
 ϕ. Thus, we have
A 
 Γ ⊆ Γ′, A 6
 ∆, B 
 ∆ ⊆ ∆′, and A ⊆ B. So ∆ is not preserved under
Γ-Kripke submodels. ⊣
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Note that the classical theorem is an easy consequence of Theorem 4.1 and
the following two lemmas. As in [5], we denote the set of classically valid
sentences by CQC.

Lemma 4.2 Let A be a Kripke model over a language L. Then A 
 CQC if

and only if for all i ∈ |A| and all sentences ϕ ∈ L(Ai), i 

A ϕ ⇔ Ai |= ϕ.

Proof. Left to the reader. ⊣

Lemma 4.3 Let Γ and ∆ be theories such that CQC ⊆ Γ ⊆ ∆. Then ∆
is preserved under Γ-Kripke submodels if and only if ∆ is preserved under

classical Γ-submodels.

Proof. (⇒) Since a classical model can be viewed as a one-node Kripke
model, this direction is obvious.

(⇐) Suppose CQC ⊆ Γ ⊆ ∆, and ∆ is preserved under classical Γ-
submodels. Let A 
 Γ and B 
 ∆ be Kripke models such that A ⊆ B.
Since A 
 CQC and B 
 CQC, we have Ai |= Γ for all i ∈ |A| and Bj |= ∆
for all j ∈ |B|. Since Ai ⊆ Bi for all i ∈ |A|, we have by assumption Ai |= ∆
for all i ∈ |A|. So, since A 
 CQC, i 
A ∆ for all i ∈ |A|. So A 
 ∆. So ∆ is
preserved under Γ-Kripke submodels. ⊣

There is another classical result involving models and universal theories,
which states that if Γ and ∆ are classical theories, then the universal fragment
of ∆ is contained in the universal fragment of Γ if and only if every model of
Γ is contained in a model of ∆, in which case ∆ is said to be model-consistent

relative to Γ. So two theories are model-consistent relative to each other if
and only if they have the same universal fragment. To state our next result,
we need a definition. In the following, we will write (A, r) to denote a rooted
Kripke model with root r.

Definition 4.4 Let (A, r) be a rooted Kripke model. Then Th(A, r) = {ϕ ∈
L(Ar) : A 
 ϕ}. If (A, r) and (B, s) are rooted Kripke models, we say that

(A, r) and (B, s) are strongly equivalent, (A, r) ∼ (B, s), if Th(A, r) =
Th(B, s).

If (A, r) and (B, s) are rooted Kripke models and Th(A, r) = Th(B, s),
then, by the definition of forcing, Th(Ar) ∩ At(Ar) = Th(Bs) ∩ At(Bs). So
if (A, r) ∼ (B, s), then the root structures Ar and Bs are isomorphic in the
classical sense.

We prove an analogue of the classical model-consistency result for intu-
itionistic logic, using our notions of submodel and universal sentence: If Γ and
∆ are intuitionistic theories, then the universal fragment of ∆ is contained in
the universal fragment of Γ if and only if every rooted Kripke model of Γ is
strongly equivalent to a submodel of a rooted Kripke model of ∆. First we
need the following lemma, which is a converse of Proposition 2.2.

Lemma 4.5 Let (A, r) be a rooted Kripke model. Then Th(A, r) is an Ar-
Henkin prime theory.

Proof. This follows directly from the definition of forcing in a rooted Kripke
model. (See [2], Section 5.4.) ⊣
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Theorem 4.6 Let Γ and ∆ be intuitionistic theories over a language L. Then

∆ ∩ U ⊆ Γ if and only if for every rooted Kripke model (A, r) 
 Γ there are

rooted Kripke models (A′, r′) and (B, s) 
 ∆ such that (A, r) ∼ (A′, r′) ⊆
(B, s).

Proof. (⇒) Suppose ∆ ∩ U ⊆ Γ. Let (A, r) 
 Γ be a rooted Kripke
model. Then Γ′ = Th(A, r) is an Ar-Henkin prime theory over L(Ar), and
Th[Ar](Γ) ⊆ Γ′. By 3.3, since Th[Ar](∆) ∩ U(Ar) ⊆ Th[Ar](Γ) ⊆ Γ′, the
quadruple 〈Γ′, Ar, Ar,Th[Ar](∆ ∪ (Γ′ ∩ At(Ar)))〉 is acceptable. Since Γ′ is
already Ar-Henkin prime, the modified construction discussed after the proof of
3.4 yields an acceptable quadruple 〈Γ′, Ar, D

′,∆′〉, where Ar ⊆ D′, Th[Ar](∆∪
(Γ′ ∩ At(Ar))) ⊆ ∆′, and ∆′ is D′-Henkin prime. By 3.5, there are rooted
Kripke models (A′, r′) ⊆ (B, s) such that Th(A′, r′) = Γ′ = Th(A, r), and
(B, s) 
 ∆′ ⊇ ∆.

(⇐) Let (A, r) 
 Γ be a rooted Kripke model. By hypothesis, there are
rooted Kripke models (A′, r′) and (B, s) 
 ∆ such that (A, r) ∼ (A′, r′) ⊆
(B, s). Since universal sentences are preserved under Kripke submodels, we
have (A′, r′) 
 ∆ ∩ U . So also (A, r) 
 ∆ ∩ U . Thus, by the completeness of
rooted Kripke models for intuitionistic logic, Γ ⊢ ∆ ∩ U . ⊣

In the case where every Kripke model consists of a single node with only
the identity morphism, Theorem 4.6 reduces to the classical result for model-
consistent theories.
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