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SIMPLE AXIOMS THAT ARE OBVIOUSLY TRUE IN N

TOMASZ PO LACIK AND WIM RUITENBURG

Abstract. We discuss simple subtheories of Peano arithmetic
over languages which include the monus function. The system
ZDL corresponds with PA−. The choice of language permits our
theories to have special universal axiomatizations; their classes of
models have corresponding model theoretic properties.

1. Introduction

A common base system in the study of arithmetic is PA−, see [4].
Its models form the class of nonnegative parts of discretely (linearly)
ordered rings. The theory is axiomatized over a first-order language
with 0, 1, x+ y, xy, and x < y (or x ≤ y). We discuss modifications of
the base system which permit us to use results from model theory and
universal algebra to obtain nice properties for their classes of models.

One drawback of PA− as defined in [4] is, that it is not Π0
1-axiomatiz-

able or, equivalently, its class of models is not closed under submodels.
For example, let Z[X]+ be the substructure of the ring of polynomi-
als Z[X] by excluding all polynomials with negative leading coefficient.
Let N[X] be the substructure of polynomials over the natural numbers.
There is a straightforward way to extend the linear order of Z to Z[X]
by setting X to infinitely large with respect to Z. The substructures
inherit this linear order. Obviously, N[X] ⊆ Z[X]+ as ordered struc-
tures. But Z[X]+ is a model of PA− while N[X] is not, see [4, pages
18, 20].

As first modification we choose a different language by deleting x < y
and adding the monus function (symbol) x . y. Over this language we
define as minimal system an equational theory Z0. The theory Z of
nontrivial models of Z0 is axiomatized by Z0 ∪ {1 = 0 → ⊥}. We
consider additional universal axioms D, L, and N. Theories Z0L, ZD
and so on, are defined by adding the appropriate axioms to the theories
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Z0 or Z. Already over Z0 we can define a partial order x ≤ y which over
ZDLN is a linear order. The theory ZDLN equals ZDL, and corresponds
in obvious ways with PA−.

Recall that a sentence is universal Horn if it has form
∀x1, . . . , xm(P1 ∧ . . . ∧ Pn → P0), where the Pi are atomic formu-
las, possibly including truth ⊤ or falsum ⊥.

The theory ZD is the universal Horn fragment of ZDL; the theory
Z0D is the equational fragment of ZDL. It is natural to think of Z0D
as the right candidate for minimal system. However, many properties
of Z0D immediately generalize to Z0. Additionally, we present a nice
model of Z0 which satisfies interesting induction schemata, but which
is not a model of Z0D.

Most of our techniques are well-known. For model theory, see [1].
For universal algebra, see [2] or [3].

2. Axioms and Basic Properties of Z0 and Extensions

The theories of this section are universal over the language with
nonlogical symbols 0, 1, x + y, x . y, and x · y. We usually write xy
as short for x · y. We also employ the usual abbreviations 2 for 1 + 1,
3 for 2 + 1, and so on.

Define Z0 to be the theory axiomatized by

A1 x + 0 = x
A2 x + y = y + x
A3 (x + y) + z = x + (y + z)
A4 (x + y) . y = x
A5 x . (y + z) = (x . y) . z
A6 x + (y . x) = y + (x . y)

With restriction to appropriate sublanguages, the theory axiomatized
by A1 through A6 is the linear fragment of Z0. Additionally, Z0 has
axioms

A7 x1 = x
A8 xy = yx
A9 (xy)z = x(yz)

A10 x(y + z) = xy + xz
A11 x(y . z) = xy . xz

This completes the axiomatization of Z0.
Let Z be the theory axiomatizable by Z0 plus

1 = 0 → ⊥
Define the axiom D of discrete order by

x(1 . x) = 0
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Define the axiom L of linear order by

(x . y = 0) ∨ (y . x = 0)

Define the axiom N of no nilpotents by

x2 = 0 → x = 0

We show that Z is the theory of nontrivial models of Z0. We introduce
a first-order definable order x ≤ y over Z0 which justifies the names of
axioms D and L. Theories with names like Z0L or ZDN are defined by
adding the appropriate axioms to the systems Z0 or Z.

If a + b = a + c holds over Z0, then also (a + b) . a = (a + c) . a. So
Z0 satisfies

E1 x + y = x + z → y = z

Also, (a + b) . (a + c) = ((a + b) . a) . c = b . c, giving us

E2 (x + y) . (x + z) = y . z

From a+(0 . a) = 0+(a . 0) we get a+(0 . a) = 0+((a+0) . 0) = a.
So Z0 satisfies

E3 0 . x = 0

Define abbreviations

x ≤ y for x . y = 0
x ⊔ y for x + (y . x)

Axiom A6 states that a ⊔ b = b ⊔ a. Obviously, Z0 satisfies 0 ≤ a and
a ≤ a. Suppose a ≤ b and b ≤ a. Then a = a+(b . a) = b+(a . b) = b.
So we have a ≤ b ∧ b ≤ a → a = b.

Lemma 2.1. Over Z0, the following are equivalent, for all a and c.

• a + b = c, for some b
• a ≤ c
• a ⊔ c = c
• a + (c . a) = c

We leave the proof of Lemma 2.1 as an exercise. Suppose a ≤ b and
b ≤ c. Then there are a′ and b′ such that a + a′ = b and b + b′ = c. So
a + a′ + b′ = c, thus a ≤ c. So we have

Proposition 2.2. Over Z0, the formula x ≤ y is a partial order with

least element 0.

We easily verify that Z0 satisfies

E4 x ≤ y ↔ (x + z) ≤ (y + z)
E5 x ≤ y ∧ z ≤ t → (x + z) ≤ (y + t)

((a . b) . a) = (a . (a + b)) = 0, so Z0 satisfies

E6 x . y ≤ x
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E7 x ≤ y → (z . y) ≤ (z . x) (set y = x + b)

(a . c) . (b . c) = (a . b) . (c . b), so Z0 satisfies

E8 x ≤ y → (x . z) ≤ (y . z)

Obviously, over Z0 we have a ≤ a ⊔ b and b ≤ a ⊔ b. Formula E8
gives that a ≤ b implies a ⊔ c ≤ b ⊔ c. So if a ≤ c and b ≤ c, then
a ⊔ b ≤ a ⊔ c = c. Thus:

Proposition 2.3. Over Z0, the term x ⊔ y is the least upper bound of

x and y.

Introduce abbreviation

x ⊓ y for x . (x . y)

With formula E6 we get a = (a . b)⊔ a = (a . b) + a⊓ b. Adding b . a
to both sides gives a⊔ b = (b . a) + (a . b) + a⊓ b. Since a⊔ b = b⊔ a,
we have a ⊓ b = b ⊓ a. Obviously, a ⊓ b ≤ a. So also a ⊓ b ≤ b.

Lemma 2.4. Over Z0, the following are equivalent, for all a and c.

• a = c . b, for some b
• a ≤ c
• a ⊓ c = a
• a = c . (c . a)

We leave the proof of Lemma 2.4 as an exercise. Formula E7 gives
that a ≤ b implies c ⊓ a ≤ c ⊓ b. So if c ≤ a and c ≤ b, then
c = c ⊓ b ≤ a ⊓ b. Thus:

Proposition 2.5. Over Z0, the term x ⊓ y is the greatest lower bound

of x and y.

With equation a ⊓ b + (a . b) = a one easily sees that Z0 satisfies

E9 x ⊓ y + (x ⊔ y) = x + y

We leave it as easy exercises to show that Z0 satisfies

E10 (x + z) ⊔ (y + z) = (x ⊔ y) + z
E11 (x + z) ⊓ (y + z) = x ⊓ y + z

Now

a ⊓ b
= ((a . b) + a ⊓ b) ⊓ ((b . a) + a ⊓ b)
= (a . b) ⊓ (b . a) + a ⊓ b

So Z0 satisfies

E12 (x . y) ⊓ (y . x) = 0
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Over Z0, the lattice determined by x ≤ y is also distributive. We
postpone this and several other beautiful results until after we discuss
the structure of the class of models of Z0 and its extensions. With our
model theoretic results we can significantly simplify the derivation of
certain collections of formulas.

It is now obvious that L axiomatizes linearity over Z0: For all ele-
ments a and b it implies a ≤ b ∨ b ≤ a.

Discrete order versus axiom D is more complicated. Recall that a
linearly ordered ring is discrete when for all elements a and c, if a ≤
c ≤ a+1, then c = a or c = a+1. Products of linearly ordered discrete
rings are partially ordered with a distributive lattice, and satisfy the
weaker property: If a ≤ c ≤ a + 1, then c − a is idempotent. It
is reasonable to call such partially ordered rings discrete. A similar
argument applies to Z0D. Let a and c be elements of a model of Z0D
such that a ≤ c ≤ a+1. So c = a+ b for an element b satisfying b ≤ 1,
so also b2 ≤ b. Axiom D implies b ≤ b2. Thus b is idempotent.

Define abbreviation

δ(x, y) for (x . y) + (y . x)

We show that δ(x, y) behaves like a distance function. First an aux-
iliary result:

((a . c) ⊔ (b . c)) + (a . b) ⊓ (c . b)
= (b . c)+((a . (c+(b . c))+((a . b) . ((a . b) . ((c . b))
= (b . c)+((a . (b+(c . b))+((a . b) . ((a . b) . ((c . b))
= (b . c)+((a . b) . (c . b))+((a . b) . ((a . b) . ((c . b))
= (b . c) + [((a . b) . (c . b)) ⊔ (a . b)]
= (b . c) + (a . b)

So Z0 satisfies

E13 ((x . z) ⊔ (y . z)) + (x . y) ⊓ (z . y) = (x . y) + (y . z)

Formula E13 immediately implies

E14 (x . z) ≤ (x . y) + (y . z)

With formula E14 we get δ(a, c) ≤ δ(a, b) + δ(b, c). So we obviously
have:

Proposition 2.6. Over Z0, the function δ(x, y) acts like a metric,

satisfying

δ(x, y) = 0 ↔ x = y
δ(x, y) = δ(y, x)
δ(x, z) ≤ δ(x, y) + δ(y, z)

Finally, we place the new theories relative to one another and to
PA−.
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Proposition 2.7. The theories Z0D and Z0DN are equal.

Proof. Let a be an element over Z0D such that a2 = 0. Then a ≤ a2

implies a = 0. �

With Proposition 2.7 we see that the 16 theories we can construct
over Z0 or Z by adding combinations of D, L, and N, really are at most
12 different theories. With the model theoretic results of Section 3 we
easily see that these 12 all differ.

For all a over Z0 we have a0 = a(0 + 0) = a0 + a0. So a0 = 0. Since
a1 = a, we get that Z0 satisfies

E15 x0 = 0
E16 1 = 0 → x = y

This implies that Z is the theory of nontrivial models of Z0.
We have already seen how to define x ≤ y, so also x < y, over ZDL.

Conversely, define x . y = z over PA− by

x = y + z ∨ (x < y ∧ z = 0)

It is a straightforward exercise to show that in this way we can convert
models of ZDL into models of PA− and back.

3. Model Theory of Z0 and Extensions

The natural numbers N form a model of ZDL. The nonnegative
rationals Q+0, and the nonnegative reals R+0, are models of ZLN.

The class of models of a first-order theory is closed under isomor-
phisms, ultraproducts, and elementary submodels. From universal al-
gebra and model theory we also know that the class of models of an
equational theory is closed under submodels, products, and (homomor-
phic) images. So these closure rules apply to the model classes of Z0

and Z0D. Similarly, the classes of models of the universal Horn theories
Z, ZD, ZN, and Z0N, are closed under submodels and products. The
classes of models of the universal theories Z0L, ZL, Z0DL, ZDL, Z0LN,
and ZLN, are closed under submodels.

A subset I of a model M of Z0 is called an ideal if it satisfies:

I1 0 ∈ I
I2 a ≤ b ∈ I implies a ∈ I, for all a, b
I3 a, b ∈ I implies a + b ∈ I, for all a, b
I4 a ∈ I implies ab ∈ I, for all a, b

An ideal is nontrivial if 1 is not an element of the ideal.
Let ϕ : M → N be a morphism between models of Z0. Define

ker(ϕ) = {m ∈ M | ϕ(m) = 0 }. Morphisms define a congruence
∼ on their domain defined by a ∼ b exactly when ϕ(a) = ϕ(b).
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Proposition 3.1. Each ideal I of a model M of Z0 defines a con-

gruence on M defined by a ∼ b exactly when δ(a, b) ∈ I. If ϕ is a

morphism with domain M, then its kernel ker(ϕ) is an ideal on M
which defines the same congruence on M as ϕ.

Proof. Let I be an ideal, and let a ∼ b be defined by δ(a, b) ∈ I.
Obviously, x ∼ y is an equivalence relation. Suppose a ∼ b and c ∼ d.
Then δ(a+c, b+d) ≤ δ(a+c, b+c)+δ(b+c, b+d) = δ(a, b)+δ(c, d) ∈ I.
Also, δ(a . c, b . d) ≤ δ(a . c, b . c)+δ(b . c, b . d) ≤ δ(a, b)+δ(c, d) ∈ I.
Finally, δ(ac, bd) ≤ δ(ac, bc) + δ(bc, bd) = cδ(a, b) + bδ(c, d) ∈ I.

Let ϕ be a morphism with domain M. Obviously, ker(ϕ) is an ideal.
Now a ∼ b if and only if ϕ(a) = ϕ(b) if and only if δ(ϕ(a), ϕ(b)) =
ϕ(δ(a, b)) = 0 if and only if δ(a, b) ∈ ker(ϕ). �

For all models M and ideals I of M, we can now form quotient mod-
els M/I in the expected way. All images of M are, up to isomorphism,
of the form M/I.

Let a be an element of a model M of Z0. Define 〈a〉 = { b | b ≤
ac for some c }. It is an easy exercise to show that 〈a〉 is an ideal, and
the least ideal containing a.

Example 3.2. Consider the model M constructed from the product
model (Q+0)ω as follows: Take the product model modulo the cofinite
filter F on ω. Then choose for M the submodel generated by the
constant functions plus the function ε defined by ε(n) = 1

n+1
(the

elements of (Q+0)ω/F are equivalence classes of functions ω → Q+0).
The structure M ∼= Q+0[ε] is a model of ZLN such that aε ≤ 1 for all
a ∈ M. The quotient Q+0[ε]/〈ε〉 ∼= Q+0.

Let M be a model of Z0. Define
√

0 to be the set { x ∈ M | xn =
0 for some n }. It is an easy exercise to show that

√
0 is an ideal, and

proper when 1 is not equal to 0. The quotient M/
√

0 is a model of
Z0N.

For ideals I, we define ideals
√

I in the obvious way.

Example 3.3. Let M be the model of Example 3.2. Up to isomor-
phism, the quotient M/〈ε2〉 = Q+0[d], with d = ε/〈ε2〉 satisfying
d2 = 0 while d is nonzero. So Q+0[d] is a model of ZL which is not a
model of ZLN. We easily verify that 〈d〉 =

√
0.

The collection of ideals of a model of Z0 is closed under unions of
chains and under intersections. A union of a chain of proper ideals is
proper. So each proper ideal is contained in a maximal proper ideal.
The collection of ideals forms a complete lattice with respect to set
inclusion.
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Let a be an element of a model M of Z0. Define 〈0〉 : 〈a〉 = { b |
ab = 0 }. It is an easy exercise to show that 〈0〉 : 〈a〉 is an ideal, and
nontrivial exactly when a is nonzero. Let Ia be the ideal ∪n(〈0〉 : 〈an〉).
In the quotient M/Ia, if ab = ac, then b = c.

A nontrivial ideal I is called linear if a⊓ b ∈ I implies a ∈ I or b ∈ I,
for all a and b. So, with formula E12, I is linear exactly when M/I is
a model of Z0L.

Proposition 3.4. Let M be a model of Z, and a ∈ M be such that

a 6= 0. Then there is an ideal J of M which is maximal with the

property that a is not an element of J . Additionally, J is such that

M/J is a model of ZL
For all b ∈ M/J , if bc ≤ a for all c, then b = 0

Proof. The zero ideal does not contain a. By Zorn’s Lemma, there is
a maximal ideal J such that a /∈ J .

Let J be an ideal, maximal in not containing a. Let b, c ∈ M/J be
such that b⊓c = 0. To show: b = 0 or c = 0. If a ∈ 〈b〉∩〈c〉, then there
is d such that a ≤ (bd)⊓ (cd) = (b⊓ c)d = 0, contradiction. So we may
assume that a /∈ 〈b〉. So, by the maximality of J , 〈b〉 = 0. Thus b = 0.

If bc ≤ a for all c, then a /∈ 〈b〉. So, by the maximality of J , b = 0. �

So models of Z are, up to isomorphism, exactly the submodels of
products of models of ZL, even subdirect products of models of ZL
which satisfy the additional property

∃x[x 6= 0 ∧ ∀y(∀z(yz ≤ x) → y = 0)]

With universal algebra and with model theory we have:

Proposition 3.5. The theory Z is the universal Horn fragment of ZL.

The theory Z0 is the equational fragment of ZL. The theory ZD is the

universal Horn fragment of ZDL. The theory Z0D is the equational

fragment of ZDL.

Let Z

[

X, X
√

2
]+

be the substructure of the ring Z

[

X, X
√

2
]

, ob-

tained by removing all polynomials with negative leading coefficient.
Set n . X = 0, for all natural numbers n. This uniquely makes

Z

[

X, X
√

2
]+

a model of ZDL, satisfying

∃xy(δ((x + 1)2, 2(y + 1)2) = 0)

Now N satisfies

1 . δ((x + 1)2, 2(y + 1)2) = 0
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So Z0D is not the equational fragment of the theory of N. Since N is
submodel of all models of Z, the universal fragment of its theory is the
unique largest consistent universal extension of Z.

Applications of Proposition 3.5: Let a and b be elements of a model
of ZL. If a ≤ b, then a ⊓ b = a and a ⊔ b = b, so ab = (a ⊓ b)(a ⊔ b).
Otherwise, b ≤ a and, by an argument similar to the one above, ab =
(a ⊓ b)(a ⊔ b). So, with Proposition 3.5, Z0 satisfies

E17 xy = (x ⊓ y)(x ⊔ y)

The following is now obvious: Let a, b, and c be elements of a model
of ZL. Then b ≤ c ∨ c ≤ b implies that a ⊓ (b ⊔ c) = a ⊓ b ⊔ a ⊓ c. So,
with Proposition 3.5:

Proposition 3.6. Over Z0, the lattice determined by x ≤ y is distribu-

tive.

We easily verify that Z0N is axiomatizable by Z0 plus

E18 xy = 0 → x ⊓ y = 0

With formula E12 we see that Z0L is axiomatizable by Z0 plus

E19 x ⊓ y = 0 → (x = 0 ∨ y = 0)

So, with formula E17, Z0LN is axiomatizable by Z0 plus

E20 xy = 0 → (x = 0 ∨ y = 0)

A nontrivial ideal I is called prime if ab ∈ I implies a ∈ I or b ∈ I,
for all a and b. Obviously, prime ideals are linear. I is prime exactly
when M/I is a model of Z0LN.

An element a is called nilpotent when an = 0, for some n.

Proposition 3.7. Let M be a model of Z, and a ∈ M be such that a
is not nilpotent. Then there is an ideal J of M which is maximal with

the property that no power of a is an element of J . Additionally, J is

prime.

Proof. By Zorn’s Lemma there exists an ideal J that is maximal in not
containing a power of a. Suppose we have elements b and c that are
not in J . Set J [b] = { y | y ≤ j + db for some j ∈ J and d ∈ M}
and J [c] = { y | y ≤ j + dc for some j ∈ J and d ∈ M}. Obviously,
J [b] and J [c] are ideals. By the maximality of J , there are integers
m and n such that am ≤ j1 + d1b and an ≤ j2 + d2c. So am+n ≤
(j1 + d1b)(j2 + d2c) ∈ J [bc]. So bc /∈ J . Thus J is prime. �

In particular, models of ZN are, up to isomorphism, exactly the
submodels of products of models of ZLN. With universal algebra and
with model theory we have:
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Proposition 3.8. The theory ZN is the universal Horn fragment of

ZLN.

Model R+0 satisfies

∃xy(δ((x + 1)2, 2(y + 1)2) = 0)

while Q+0 satisfies

∀xyzw(δ((x+1)2, 2(y+1)2)z = δ((x+1)2, 2(y+1)2)w →
z = w)

So ZN is not the universal Horn fragment of the theory of Q+0.
We construct structures R(M) from models M of Z0, similar to the

construction of Z from N. Take all pairs (m, n) ∈ M ×M , where M is
the underlying set of M. Define (m, n) ≃ (p, q) exactly when m + q =
p + n. Informally, (m, n) stands for m − n. It is a standard exercise
to verify that ≃ defines an equivalence relation which is respected by
addition (m, n) + (p, q) = (m + p, n + q) and multiplication (m, n) ·
(p, q) = (mp + nq, mq + np). Additionally, (m, n) . (p, q) = ((m + q) .

(n + p), 0) respects the equivalence. The result is a commutative ring
with a function x . y such that the substructure on the elements of the
form (m, 0), is isomorphic to M. The commutative ring is nontrivial,
exactly when M is a model of Z. The commutative ring is an integral
domain, exactly when M is a model of ZLN. The map m 7→ (m, 0)
is an embedding. As for N and Z, it is usual to identify M with this
image. Since (m, n) = (m . n, 0)+ (0, n . m), each element a of R(M)
can be uniquely written as a = p− q, for p, q ∈ M satisfying p⊓ q = 0.
The structure R(M) admits a distributive lattice structure defined by
a ≤ b exactly when a . b = 0. The order a ≤ b is linear, exactly when
M is a model of Z0L.

Let M be a model of ZLN. Then R(M) ‘is’ a linearly ordered
integral domain. Its quotient field Q(M) is embeddable in an ordered
real closed field R, with a . b defined by the maximum of a− b and 0.
Let R+0 be the substructure of nonnegative elements. Then R+0 is a
model of ZLN. The theory of ordered real closed fields is complete, so
R+0 is elementarily equivalent to R+0.

Proposition 3.9. The theory ZLN is the universal fragment of the

theory of R+0.

Proof. R+0 is a model of ZLN. Each model of ZLN is embeddable in a
model of the theory of R+0. �

In contrast to the case for Z0D versus N, we have

Proposition 3.10. The equational fragment of the theory of Q+0 equals

the equational fragment of ZLN.
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Proof. Q+0 is a model of ZLN. Let M be the submodel of (Q+0)ω of all
Cauchy sequences {an}n. On M, the subset { {an}n | limn→∞ an = 0 }
forms an ideal J . The quotient M/J is isomorphic to R+0. �

Is Z0 the equational fragment of ZLN? We conjecture that it is.

4. Induction Schemata

The straightforward translation between PA− and ZDL allows for
immediate translations of induction schemata over PA− into induction
schemata over ZDL. We may extend ideas of induction schemata to
proper subtheories. Here is a motivating example.

Proposition 4.1. The model R+0 satisfies

∀x(ϕ(x) → ϕ(x + 1)) ∧ ∃xϕ(x) → ∃y∀x(y ≤ x → ϕ(x))

for all formulas ϕ(x) in which y does not occur free.

Proof. The model R+0 satisfies

x . y = z ↔ (x ≤ y ∧ z = 0) ∨ (x = y + z))

This allows us to translate formulas over the language of R+0 to the
language of ordered rings with the theory of the ordered field R, while
preserving derivability. We now easily check that the theory of R+0

satisfies quantifier elimination. For every allocation of the variables
minus x, the set r for which ϕ(r) holds, is a finite collection of open and
closed intervals, permitting ∞ as open endpoint. In the case of ϕ(x)
satisfying the assumptions of the induction schema, the collection of
intervals must include a nonempty one of the form (s,∞) or [s,∞). �

5. Intuitionistic Z

So far we tried to avoid technical results that are less familiar to re-
searchers in logic. Such attempts are naturally subjective. Part of our
attempt meant that we limited ourselves to classical logic and model
theory. In this final section we take a few steps into the area of intu-
itionistic logic and Kripke model theory. For an accessible exposition
of intuitionistic first-order logic and Kripke models, see [5].

Before discussing an intuitionistic version of Z, we have to revisit
our definitions of Section 2. We now introduce Z0 as the set of axioms
A1 through A11 rather than as a theory. Names like Z0L or ZDN
refer to the appropriate finite sets of axioms. The classical theories
of the earlier section are now renamed Z0L

c or ZDNc. Corresponding
first-order intuitionistic theories are named Z0L

i or ZDNi. And so on.
We call a first-order formula ϕ geometric when there are formulas σ

and τ , built from atoms and ⊤ and ⊥ using conjunction, disjunction
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and existential quantification only, and variables x = x1, . . . , xn, such
that ϕ equals

∀x(σ → τ)

We may call formulas geometric when they are geometric up to some
obvious intuitionistically provable equivalence.

Let Γ ∪ {ϕ} be a set of geometric formulas. Then ϕ follows from Γ
using classical logic, if and only if ϕ follows from Γ using intuitionistic
logic. This implies that all formulas which we derived in Section 2, also
follow in the intuitionistic case. We leave it as an exercise to give a
direct intuitionistic proof that, over Zi

0, terms x ⊓ y and x ⊔ y satisfy
the equations for a distributive lattice. A geometrically axiomatizable
theory is called geometric.

Let Γ be a set of geometric formulas. Then a Kripke model satisfies
Γi, exactly when the node structures of the Kripke model are models
of Γc. For example, the node structures of Kripke models of Z0L

i are
models of Z0L

c (or: The Kripke models are locally Z0L
c); and so on.

Geometric theory ZDLi has enough strength to prove interesting results
that are not expressible geometrically:

Proposition 5.1. The theory ZDLi satisfies the principle of decidable

equality

x = y ∨ ¬ x = y

Proof. Obviously, Zi satisfies the geometric formula

(x + 1) ≤ x → ⊥
and ZDLi satisfies the geometric formula

x ≤ y ∨ y + 1 ≤ x

Assume ZDLi, and let a and b be elements. Then we have (a ≤ b ∨
(b+1) ≤ a) ∧ (b ≤ a ∨ (a+1) ≤ b). So also (a ≤ b ∧ b ≤ a) ∨ ¬ a = b,
and thus a = b ∨ ¬ a = b. �

Since ZDL is geometric, the decidable equality principle for ZDLi

is equivalent to the statement that all (classical) morphisms between
models of ZDLc are one-to-one. Proposition 5.1 also implies that the
quantifier-free formula fragment of ZDLi satisfies the rules of classical
propositional logic.

We call a formula Π0
2 when it is of the form ∀x∃yϕ, for some quantifier-

free formula ϕ.

Proposition 5.2. The theory ZDLc is Π0
2-conservative over ZDLi.

Proof. Let ZDLc ⊢ ∀x∃yϕ(xy) for some quantifier-free formula ϕ. Let
α be a node of a Kripke model K of ZDLi, and a be a string of elements
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of domain Dα of node structure Dα. It suffices to show that α 

∃yϕ(ay). We have Dα |= ZDLc. So there are elements b in Dα such
that Dα |= ϕ(ab). Since the propositional fragment of ZDLi satisfies
classical logic, also α  ϕ(ab). Thus α  ∃yϕ(ay). �

A generalization to Π2-conservativity, with bounded quantifications
allowed where in Π0

2 we only have quantifier-free formulas, is not valid
in full generality. For example, let ϕ be the sentence

∀x(∀y(y ≤ x → ¬ y2 = x) ∨ ∃y(y ≤ x ∧ y2 = x))

Then ϕ is a tautology over classical logic, so certainly derivable over

ZDLc. Let Z

[

X, X
√

2
]

be the linearly ordered ring with n ≤ X for all

integers n. The substructure Z

[

X, X
√

2
]+

of nonnegative polynomials

uniquely determines a model of ZDLc. Similarly construct submodel

Z[X]+ of Z

[

X, X
√

2
]+

. In the Kripke model

Dβ = Z

[

X, X
√

2
]+

•
β

6

Dα = Z[X]+•α

of ZDLi, let a be the element 2X2 ∈ Dα. Then α 1 ∀y(y ≤ a →
¬ y2 = a) ∨ ∃y(y ≤ a ∧ y2 = a). So ϕ is not derivable over ZDLi.
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