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1 Introduction

It is tempting to conclude that classical mathematics is vindicated by its suc-
cess, in particular by its applicability to the natural sciences. Constructive
mathematics and intuitionism, on the other hand, lost by being too puri-
tanical, and by making it too hard to prove results constructively that are
easily shown to be true by classical means. Its sole rôle is that of servant to
classical mathematics through model theory or topos theory, and through its
assistance to (classical) computer algebra and their likes (such a serving rôle
need not be interpreted as degrading). Some careful observations, however,
reveal a more complicated picture.

When one looks at the applications of classical mathematics to the natural
sciences and in engineering, then a significant part appears to be completely
constructive, and even essentially computational, in nature. At that level
distinctions between constructive and classical mathematics are fictitious.
This observation is partly an argument in favor of classical mathematics,
since it allows for simpler methods while obtaining the same results as con-
structivism. But the sameness disappears at a deeper level. For instance,
in [13] and [14] (see also [1]) Pour-El and Richards show that a certain re-
cursively initialized boundary value problem in physics has a solution that
is not recursive. Some interpret this as saying that nature is not bound by
recursion theory. There is also another interpretation. The recursively ini-
tialized boundary value problem of Pour-El and Richards is equivalent to a
boundary value problem in constructive mathematics for which one cannot
constructively show the existence of a solution. Maybe constructive mathe-
matics signals that such a solution is not physically feasible or, more likely,
that the classical model used for the physical phenomenon is an imperfect
approximation of physics that fails in this extreme case, as shown by the
lack of a constructively derivable solution. Although constructivism was not
introduced for this purpose, we cannot exclude the possibility that better
models of nature are obtained through some theory involving a constructive
logic. From a formal point of view classical mathematics is a theory extend-
ing constructive mathematics with principles including the Principle of the
Excluded Third A ∨ ¬A. So the model using classical logic may be a close
approximation of a ‘correct’ but more cumbersome model using some form
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of constructive logic, only failing in cases of the kind mentioned above. In
areas like computer algebra constructive logic may perform relatively more
prominent functions. The idea of using models of nature with a logic dif-
ferent from the classical one is not new. Quantum logic has been used to
model quantum mechanical phenomena. In this paper we restrict ourselves
to constructive logics.

The pleasing image of a constructive logic and theory that is ‘more cor-
rect’ but less efficient than its narrow extension in classical mathematics,
suggests a new possibility: Are there extensions of constructive logic that
may be just as valuable as classical logic, but that are relatively inconsis-
tent with classical logic? The answer is a resounding yes, and examples date
back to Brouwer himself, who introduced ‘new’ principles in intuitionistic
mathematics with which one can prove that all functions on the Cauchy
reals with compact support are uniformly continuous. Similar results in dif-
ferential geometry, accompanied by interesting models, are discussed in [8]
and [11]. These theories include first-order fragments satisfying principles
like ¬∀x(Ax ∨ ¬Ax) for certain Ax. These extensions are not out of reach
of the classical mathematician. By the completeness theorems, through re-
interpretation of intuitionistic statements into classical mathematics using
realizability, sheaf models, and so on, classical mathematics is able to model
these intuitionistic theories. As important difference remains that the original
intuitionistic theories tend to select the interesting structures from the chaff
of these models, and often lead to more efficient and more natural derivations
of the relevant properties.

It appears that classical mathematics and logic is just one of several use-
ful extensions of constructive logic. There are of course also variations on
constructive logic, if only by just making up arbitrary rules for the logical
constants. Most, but not all, of these are utterly useless. Logics that are
motivated by interesting philosophical or technical principles have a better
chance of being worthy of our consideration. In this paper we restrict our
attention to (first-order) logics that are motivated by some form of construc-
tivism. How arbitrary or unique is constructive logic? There are several
schools of constructive mathematics, all with their own philosophies. Al-
though they differ from one another in principles as well as in some parts of
their mathematics, they all agree, be it sometimes grudgingly, on the same
first-order constructive logic: Intuitionistic logic. This logic, and some fur-
ther principles on the existence of natural numbers and sets, is recognized
by all leading schools, and may be considered the basic constructive logic
mentioned in the paragraphs above. This convergence of forces, and the ad-
ditional connection with topos theory, shows that it is a ‘right’ generalization
of classical logic and mathematics [10, page 103]. The picture as sketched
suggests that there is essentially one constructive logic, intuitionistic logic,
of which classical logic is one of several interesting extensions. However, first
impressions may deceive us again.

For many constructivists constructive logic is an afterthought, being sec-
ondary to constructive mathematics itself. Logic is useful in clarifying con-
structive principles, but is itself supposed not to contribute to the principles
of constructivism. This complacent approach forms the weak link between
constructivism and logic. There are some attempts at more precisely clarify-
ing the logical connectives. The most well-known is the proof interpretation
of Heyting and Kolmogorov [6], and a variation on it that was once proposed,
for different purposes, by Kreisel [9]. The proof interpretation of intuition-
istic first-order logic is generally considered an explanation rather than an
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interpretation of the first-order logical connectives. Many details of it have
been the subject of debate and criticism, and the existence of the variation
by Kreisel already indicates that constructivists generally feel that the expla-
nation is not completely satisfactory. The weakest spots are associated with
the interpretations of implication and universal quantification. Usually con-
structivists expect that a more detailed study of the logical operations will
result in an improved interpretation that will confirm, or at least support,
intuitionistic first-order logic. Bishop, for example, questioned the contem-
porary understanding of implication [2], but found that wherever he used it
in his own work on constructive analysis, he was able to give additional nu-
merical justification for its application. Significantly, Bishop did not express
any expectation that the rules of intuitionistic logic themselves should be
questioned from his constructive point of view. In this paper we show that
a different approach to the proof interpretation results in a new constructive
logic that is a proper subsystem of intuitionistic logic.

In Section 2 we mention the proof interpretation of Heyting and Kol-
mogorov, and the variation by Kreisel, and compare these with a new proof
interpretation. In Section 3 we describe a new first-order logic, Basic Pred-
icate Calculus BQC, that is motivated by the new proof interpretation, and
that is a proper subsystem of Intuitionistic Predicate Calculus IQC. Both
IQC and Formal Predicate Calculus FQC are introduced as extensions of
BQC. The extension FQC is associated with the provability logic PrL of [17]
(called G in [4]) in the same way that IQC is associated with the modal logic
S4 (and BQC with K4). The theories FQC and IQC are relatively incon-
sistent. In Section 4 we introduce Fregean set theories over BQC. Over F
the traditional proof of the Russell Paradox turns into a derivation of the
additional axiom schema of FQC. This result illustrates that logic sometimes
doesn’t precede set theory. Variations on F also allow for proofs of the addi-
tional axiom schema. Fregean set theories may be new useful extensions of
BQC (and FQC) that are not extensions of intuitionistic logic IQC.

2 The Proof Interpretation

In classical mathematics one assumes a logic for a mathematical world where
each statement is either true or false. This is motivated by our experience
with mathematical statements about finite structures, and with certain el-
ementary statements about the natural numbers, and consequently gener-
alized to other mathematical structures. For finite discrete structures, and
for certain fragments of number theory (hence also for certain fragments of
the theories of integers, rationals, and so on), this understanding is almost
universally accepted, though maybe for varying philosophical reasons. Sev-
eral mathematicians and philosophers have questioned the generalizations.
One alternative has been the introduction of notions of mathematical truth
based on proofs, thereby introducing more rigorous, hence more reliable, ‘def-
initions’ that can more safely be extended to new mathematical structures.
An alternative approach is restricting the number of possible mathematical
structures, but we don’t expect to ever reduce their number so much that
logic becomes simple. So the constructive variations on the classical notion
of truth have priority.

Heyting, and independently Kolmogorov, initiated the first serious at-
tempts at explaining the logical constants of first-order logic in terms of
proofs. Their explanations are generally considered equivalent. Heyting
based his version on the use of the logical constants in the intuitionistic
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literature, in particular on their use by Brouwer. The resulting Brouwer-
Heyting-Kolmogorov BHK interpretation, or explanation [19], expresses the
provability, hence validity, of first-order statements in terms of proofs and
constructions concerning their parts. The validity of atomic sentences is
supposed to be provided with the model, say D.

• ⊤ is true by itself. that is, the empty proof suffices. There is no proof
for ⊥.

• A proof p of A∧B consists of a pair of proofs q, r such that q is a proof
of A and r is a proof of B.

• A proof p of A ∨ B consists of a pair n, q with n an integer such that
either n = 0 and q is a proof of A, or n = 1 and q is a proof of B.

• A proof p of ¬A is a construction that converts hypothetical proofs of
A into a proof of ⊥.

• A proof p of A → B is a construction that converts proofs of A into
proofs of B.

• A proof p of ∀xAx is a construction which for each construction c of
an element d of the domain of D produces a proof p(c) of Ad.

• A proof p of ∃xAx consists of a pair c, q, where c is the construction of
an element d of the domain of D, and q is a proof of Ad.

The clause for negation is commonly considered a special case of implication
under the usual translation of ¬A into A → ⊥. A statement is true if there
exists a proof for it. The BHK interpretation does not express how to verify
a proof when we see one. This may be obtained if we accept the following
modifications to the interpretation, as introduced by Kreisel [9]: Proofs of
implications and universal quantifications need additional evidence that they
‘work’.

• A proof p of A → B is a pair q, r such that q is a construction that
converts proofs of A into proofs of B, and r is a proof that q is such a
construction.

• A proof p of ∀xAx is a pair q, r such that q is a construction which
for each construction c of an element d of the domain of D produces a
proof q(c) of Ad, and r is a proof that q is such a construction.

The proof interpretation leaves several questions. What is the nature of proof
versus that of construction? Do the explanations for implication imply that
there is a universe of all possible proofs? Can we apply the proof interpre-
tation to this ‘universe’ of proofs and have an intuitionistic mathematics of
proofs [9]? Is the additional evidence proposed by Kreisel of the same nature
as the original proofs or constructions?

The proof interpretation is not reductive. The meaning of the logical
constants is not explained in simpler terms. One way to make it so is by
assuming the existence of a universe U of proofs. To make the interpretation
reductive, this universe should in general not be more complicated than the
theory of which it is the universe of proofs. Otherwise the interpretations
of implication and universal quantification, where one quantifies over the
elements of U , would create an interpretation more complicated than the
theory that we started with. Kleene’s realizability interpretation for Heyting
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Arithmetic may be considered a proof interpretation in which there is a
universe of ‘proofs’ encoded in numbers. However, a formula of first-order
arithmetic is realized by a number if and only if that formula is derivable
from HA plus a formalized version of Church’s Thesis [20, page 196]. It
appears inevitable that if a theory is sufficiently strong, then the existence
of a universe of proofs requires some kind of Church’s Thesis.

In the absence of a universe of proofs we must look for a different approach
to make the interpretation reductive. Below we change the proof interpre-
tation in such a way that we no longer quantify over all proofs. On one
hand this removes the need for additional evidence as proposed by Kreisel.
On the other hand we need a new constructive logic. The following is the
interpretation that naturally follows.

• ⊤ is true by itself. that is, the empty proof suffices. There is no proof
for ⊥.

• A proof p of A∧B consists of a pair of proofs q, r such that q is a proof
of A and r is a proof of B.

• A proof p of A ∨ B consists of a pair n, q with n an integer such that
either n = 0 and q is a proof of A, or n = 1 and q is a proof of B.

• A proof p of ¬A is a construction that uses the assumption A to produce
a proof of ⊥.

• A proof p of A → B is a construction that uses the assumption A to
produce a proof of B.

• A proof p of ∀xAx is a construction that uses the assumption that an
element d has been constructed to produce a proof of Ad.

• A proof p of ∃xAx consists of a pair c, q, where c is the construction of
an element d of the domain of D, and q is a proof of Ad.

Negation is a special case of implication. Using assumption A, rather than
a proof of A, to produce a proof of B avoids the need for converting proofs
as in the BHK interpretation. It also makes it harder to prove B, since less
information is provided. Assumptions are like boxes with on the outside a
description of their contents. We may pretend that the boxes contain what
the outside says, as long as we are not required to actually open them and use
their contents to proceed. If the outside of the box describes a more involved
logical structure, then we are allowed to use the proof interpretation of its
logical connectives as a more detailed description of the contents of the box.
So a box that is assumed to contain a proof of A ∧ B may be assumed to
consist of two boxes, one with a proof of A, and one with a proof of B. A box
that is assumed to contain a proof of A ∨ B contains a box with a number
that equals 0 or 1, and a box that contains a proof of A or B depending on
whether the number equals 0 or 1 (we cannot look inside either one of these
boxes). If the box is assumed to contain a proof of (A ∨ B) → C, then it is
assumed to contain a construction p that uses an assumed proof of A∨B to
produce a proof of C. This construction p, therefore, assumes that there is
a pair n, q, where n equals 0 or 1 and so on, to produce a proof of C, but
without being able to know whether n equals 0 or 1. So the assumed proof p
is a construction that must enable us to produce a proof of C from A, and to
produce a proof from B. So we can produce a box that is supposed to prove
(A→ C) ∧ (B → C). So

((A ∨B) → C) → ((A→ C) ∧ (B → C))

5



holds. From assumption A it is easy to produce a proof of A, namely the
trivial proof of A by assumption. So the implication A → (⊤ → A) holds
(and so does A → A). But A need not follow from the assumption ⊤ → A,
for a proof of (⊤ → A) → A is a construction p that uses the assumption that
there is a construction q that produces a proof of A to produce a construction
that produces a proof of A. However, the construction q is assumed to exist
rather than explicitly given. So we may not be able to deliver p without the
assumption ⊤ → A being ‘satisfied’, that is, being proven. Following the
metaphor above, we would have had to open the assumption ‘box’ before
proceeding. A proof p of (⊤ → A) → (⊤ → A), by contrast, can use the
assumed construction q for a proof of A to construct a construction, that is
supposed to produce a proof of A, by just echoing q.

In general A→ (B → C) and B → (A→ C) are not equivalent, and also
essentially weaker than (A ∧ B) → C. This has significant consequences for
universal quantification. The meaning of ∀xA is essentially equivalent to the
meaning of an implication Ex→ A, where E is the extent operator of Heyting
and Scott [16]. So ∀x∀yA is essentially equivalent to Ex → (Ey → A). We
wish to also have a universal quantification that is essentially equivalent to
(Ex ∧ Ey) → A. It suffices to include universal quantification over pairs
of elements ∀(x, y)A, and similarly over longer finite sequences of variables.
We will often use boldface characters to represent finite sequences. Another
enrichment is obtained by a quantification that allows for equivalence with
implications A → B in general. Therefore our new universal quantification
looks like ∀x : A.B, which is essentially equivalent to (Ex1∧ . . .∧Exn∧A) →
B.

The new proof interpretation resolves a drawback that the BHK inter-
pretation experiences with the axiomatic method in mathematics. With the
new interpretation a new axiom, say A, is an assumption that works like a
sealed box with a proof that is only needed as far as the logical structure
of A is concerned. So there is no reason to worry about the further origins
of the assumed proof. With the BHK interpretation, however, a proof of,
say, A → B may use every aspect of the proof of the axiom A in deriving
B. There may be some hidden structure among all possible proofs of A that
can be used to prove B, without our knowing of the existence of this hidden
structure. Thus A→ B may be provable without our being able to recognize
its proof. Kreisel tried to resolve this issue by requiring additional evidence,
but the exact form of this additional evidence may itself never become clear.

3 Basic Logic

The proof interpretation of the previous Section is the basis for our axioma-
tization of Basic Predicate Calculus BQC. The proof interpretation of first-
order logic without implication and universal quantification is the same for
both the BHK interpretation and the new interpretation. Therefore we start
with the axiomatization of the fragment of BQC built up from the atomic
formulas and ⊤ and ⊥ with the logical connectives ∧, ∨, and ∃ only. Since
we give an axiomatization using sequents A⇒ B, this theory turns out to be
exactly geometric logic. A sequent A ⇒ B also represents that there exists
a proof of B from the assumption A. Structurally geometric logic essentially
behaves like a distributive lattice, with indexed colimits that commute with
finite limits. For the rules a single horizontal line means that if the sequents
above the line hold, then so do the ones below the line. A double line means
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the same, but in both directions.

A⇒ A

A⇒ B B ⇒ C
A⇒ C

A⇒ ⊤ ⊥ ⇒ A

A⇒ B A⇒ C
A⇒ B ∧ C

B ⇒ A C ⇒ A
B ∨ C ⇒ A

Ax⇒ Bx
At⇒ Bt †

B ⇒ A
∃xB ⇒ A

‡

A ∧ (B ∨C) ⇒ (A ∧B) ∨ (A ∧C)

A ∧ ∃xB ⇒ ∃x(A ∧B) ‡

We allow the substitution of new variables for bound variables. In case †, the
term t does not contain a variable bound by a quantifier of A or B; in cases
‡, the variable x is not free in A. As theory of equality we have

⊤ ⇒ x = x

x = y ∧Ax⇒ Ay ∗

In case ∗, the variables x, y are not bound by a quantifier of A. The theory
above is called geometric logic. A theory of sequents from this sublanguage is
called a geometric theory. From [15] we see that even classical logic CQC with
Excluded Middle, and with its additional rules for implication and universal
quantification, is conservative over geometric logic. Intuitionistic Predicate
Calculus and Basic Predicate Calculus diverge in their rules for implication
and universal quantification. BQC only satisfies:

A ∧B ⇒ C
A⇒ B → C

A⇒ B → C
A⇒ ∀x : B.C

‡

We must also add the ‘formalized’ versions of some of the rules of ⇒ to make
→ its ‘faithful’ reflection:

(A→ B) ∧ (B → C) ⇒ A→ C

(A→ B) ∧ (A→ C) ⇒ A→ (B ∧ C)

(B → A) ∧ (C → A) ⇒ (B ∨ C) → A

A→ (B → C) ⇒ A→ ∀x : B.C ‡

B → A⇒ ∃xB → A ‡

In cases ‡, the variable x and the variables in the finite sequence x are not free
in A. This completes the axiomatization of BQC. The expressions ¬A and
A ↔ B are abbreviations of A → ⊥ and (A → B) ∧ (B → A) respectively.
We write ⇒ A for ⊤ ⇒ A, and A⇔ B as short for A⇒ B plus B ⇒ A.

Unless specified differently, theories extending BQC are formed by adding
axioms in the form of sequents. It is also possible to form extensions by
adding new rules. A theory S is a subtheory of a theory T if T not only
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satisfies the new sequents of S, but also satisfies the new rules of S. BQC,
for example, is closed under all instances of the rule

⇒ ⊤ → A
⇒ A

but does not satisfy the rule, and it also has an extension that is not closed
under this rule [15]. We write T ⊢ (A⇒ B) if the sequentA⇒ B follows from
BQC augmented with the additional sequents and rules of T . Intuitionistic
Predicate Calculus IQC is axiomatized by the additional sequent schema
⊤ → A⇒ A. This is equivalent to adding the rule of Modus Ponens [15]

A⇒ B → C
A ∧B ⇒ C .

Classical Predicate Calculus CQC equals IQC extended with the sequent
schema ⊤ ⇒ A∨¬A. Formal Predicate Calculus FQC is axiomatized by the
additional sequent schema (Löb’s Axiom) (⊤ → A) → A ⇒ ⊤ → A. This is
equivalent to adding Löb’s Rule [21]

A ∧ (⊤ → B) ⇒ B
A⇒ B .

Proposition 3.4 below implies that FQC with Löb’s Axiom, and with its
additional rules for implication and universal quantification, is conservative
over geometric logic. There is a strong completeness theorem for BQC in the
same way that there is a strong completeness theorem for IQC, except that
the class of Kripke models is such that the underlying collection of nodes
(or: worlds) is provided with a transitive binary relation ≺ that need not be
reflexive [15].

In the absence of Modus Ponens there is a different schema to reflect that
implication → behaves properly relative to derivability. A theory T is called
faithful if

T ⊢
∧

i

(∀xi : Ai.Bi) ⇒ ∀x : A.B

implies
T ∪ {Ai ⇒ Bi}i ⊢ (A⇒ B),

for all Ai, Bi and A, B such that all their free variables are among the xi

and x respectively. The reverse of the implication always holds for theories
T that are axiomatizable with just sequents. Such theories always have a
minimal ‘faithful closure’ F (T ) which is also axiomatizable by sequents. The
theory T is called weakly inconsistent if F (T ) is inconsistent. Define ⊥0 to
be ⊥, and ⊥n+1 to be ⊤ → ⊥n, for all n. Then T is weakly inconsistent
exactly when T ⊢ (⇒ ⊥n) for some n. BQC, FQC, and all extensions of
IQC, are faithful [15]. A Kripke model is called rooted if there is a node α
such that α ≺ β for all β 6= α.

Proposition 3.1 Geometric theories are faithful.

Proof. Let T be a geometric theory, and let Ai, Bi, A, and B be such
that

T ∪ {Ai ⇒ Bi}i 6⊢(A⇒ B).

There is a rooted Kripke model K of T ∪ {Ai ⇒ Bi}i with root α such that
K 6|=A ⇒ B. Construct a new model K′ by adding a new root α0 ≺ α with
structure Dα0 and interpretations borrowed from α. Then K′ |= T , and
K′ 6|=

∧
i
(∀xi : Ai.Bi) ⇒ ∀x : A.B. ⊣
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Certain properties of BQC and extensions are best expressed through
substitution schemas of formulas inside formulas. We prefer to stay with
first-order logic, and introduce formula substitution in the metalanguage. So
we don’t have ‘logical’ variables in our language, but instead use the notion
of logical context C[ ] or C[P ], where P is a placeholder for a logical substi-
tution. Logical contexts are easily described as adding a new propositional
symbol, say P , to the existing collection of atomic formulas, and closing the
language under the usual logical operations. Multi-parameter logical contexts
C[P,Q] are defined similarly. A formula is the same as a logical context with-
out new propositional symbols. Illustration: BQC satisfies the Substitution
Schema

A ∧B ⇒ C A ∧ C ⇒ B
A ∧D[B] ⇒ D[C]

,

where the lower sequent satisfies the usual variable condition that the free
variables of B and C are not bound by a quantifier of D. A substitution
parameter P occurs formally in a logical context C[P ] if P occurs solely
inside implication subformulas or within range of universal quantifiers; P
occurs strictly informally if it does not occur inside implication subformu-
las or within range of a universal quantifier. A logical context is formal if
all atomic subformulas and parameters occur formally. A logical context is
strictly informal if it does not contain implications or universal quantifica-
tions. Note that for each formula A there exists an essentially unique strictly
informal logical context C[P1, . . . , Pn], and formulas A1, . . . , An with each Ai

either of the form B → C or of the form ∀x : B.C, such that A is equal to
C[A1, . . . , An]. If A is formal, then C[ ] has no atomic subformulas. If A
is strictly informal, then n = 0 and A equals C. Each time when we substi-
tute, we assume the usual variable restrictions. These are easily enforced by
renaming bound variables.

Lemma 3.2 (Monotonicity) Let P be strictly informal in the logical con-

text C[P ], and let A and B be such that no bound variable of C[ ] is free in

A or B. Then BQC satisfies

A⇒ B
C[A] ⇒ C[B]

.

Proof. All occurrences of P are in strictly positive positions. ⊣

Lemma 3.3 Let P be formal in the logical context C[P ], and let A and B
be such that no bound variable of C[ ] is free in A or B. Then BQC satisfies

(A↔ B) ∧ C[A] ⇒ C[B].

Proof. The result is immediate for implications D[ ] → E[ ] and uni-
versal quantifications ∀x : D[ ].E[ ]. The general case then follows by a
straightforward induction on the size of C[ ]. ⊣

With Lemmas 3.2 and 3.3 we easily derive the following small general-
ization of the Fixed Point Theorem of [21]. Let C[ ] be a logical context in
BQC. By substitution BQC satisfies C[⊤] ⇒ C[C[⊤]]. We can write C[P ]
as D[P, P ], where D[Q,R] is a logical context in which Q occurs only for-
mally, and R occurs strictly informally. Then BQC satisfies D[C[⊤], C[⊤]] ⇒
D[C[⊤],⊤] by Monotonicity, and D[C[⊤],⊤] ∧ (⊤ → C[⊤]) ⇒ D[⊤,⊤] by
Lemma 3.3. So BQC satisfies C[C[⊤]] ∧ (⊤ → C[⊤]) ⇒ C[⊤]. Over FQC,
using Löb’s Rule, we therefore have C[⊤] ⇔ C[C[⊤]].
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A theory is formal if it is axiomatizable by sequents A ⇒ B with B
formal. Formal theories are consistent, though sometimes barely, since they
are contained in the theory axiomatized by {⇒ ⊤ → ⊥}.

Proposition 3.4 Let T be a formal theory, and let U ∪ {A ⇒ B} be geo-

metric sequents. Then T ∪ U ⊢ (A⇒ B) if and only if U ⊢ (A⇒ B).

Proof. Suppose that U 6⊢(A ⇒ B). Then there is a one-node irreflexive
model K of U such that K 6|=(A ⇒ B). But K |= (⇒ ⊤ → ⊥), so K is a
model of T . ⊣

A theory T is said to satisfy the weak Completeness Theorem with respect
to a class of Kripke models K if for all sequents γ it satisfies: T ⊢ γ if and only
if for all K ∈ K, if K |= T , then K |= γ. The strong Completeness Theorem
is equivalent to the weak Completeness Theorem applied to all extensions of
T . A Kripke model is called a tree model if the reflexive closure � of ≺ on
the set of nodes is such that the collection of predecessors of each node is a
finite set linearly ordered by �. Recall that a Kripke model is called rooted
if there is a node α such that α ≺ β for all β 6= α. A node α is called reflexive

if it satisfies α ≺ α; otherwise it is called irreflexive.

Proposition 3.5 BQC satisfies the strong completeness theorem with respect

to rooted tree models.

Proof. Obviously, BQC is strongly complete with respect to rooted Kripke
models. From an existing model K = (P,D, I) with root α we construct a
rooted tree model with as nodes all finite ascending sequences (α, α1, . . . , αn),
n ≥ 0, of the original model, and (α, α1, . . . , αn) ≺ (α, β1, . . . , βm) exactly
when the first sequence is an initial segment of the second and, additionally,
αn ≺ βm. As domain and structure above (α1, . . . , αn) we choose Dαn and
its structure from K. Then (α, α1, . . . , αn) ‖− A in the new model, if and
only if αn ‖− A in the original model. ⊣

Lemma 3.6 Let T be a formal theory, and let U be a geometric theory.

Then T ∪ U satisfies the weak completeness theorem with respect to rooted

tree models with irreflexive root.

Proof. Suppose that T∪U 6⊢γ. There exists a rooted tree model K of T∪U
such that K 6|=γ. We may assume that its root α satisfies α ≺ α. Construct
a new model K′ by adding a new irreflexive bottom node α0 to K and by
setting its domainDα0 and the interpretations for the atomic sentences equal
to Dα and the interpretations at α. Clearly, K′ 6|=γ and K′ |= U . It suffices
to show that α0 ‖− ϕ for all sequents ϕ ∈ T . But this immediately follows
from ϕ being formal: The truth of an implication or universal quantification
above α0 only depends on its interpretation above all nodes β ≻ α0. And
this follows from the reflexivity of α and from K |= ϕ. ⊣

A geometric sequent A⇒ B is a production sequent if B is built up from
⊤, ⊥, atomic formulas, and conjunction ∧ only.

Proposition 3.7 (Disjunction Property) Let T be a formal theory, and

U be a theory of production sequents. Then T ∪ U ⊢ (⇒ A ∨ B) implies

T ∪ U ⊢ (⇒ A) or T ∪ U ⊢ (⇒ B), for all sentences A and B.

10



Proof. Suppose T ∪ U 6⊢(⇒ A) and T ∪ U 6⊢(⇒ B). There exist rooted
Kripke models KA and KB of T ∪U with irreflexive roots such that KA 6|=A
and KB 6|=B. Form a new model K by removing the root nodes αA and αB

from KA and KB, and adding a new irreflexive root node α below the disjoint
union of the two remaining parts. In Dα we only put the closed terms of the
language (allow one variable in case the language has no constant symbols),
and map these into the remaining nodes of KA and KB as required. Above
α we force the structure as required by the production sequents of U and by
equality. Obviously, the new model satisfies T ∪ U . It suffices to show that
α 6‖− A (and so by symmetry α 6‖− B). But A equals C[A1, . . . , An] for some
strictly informal logical context C and implication and universal quantifier
subformulas Ai. So for all i, α ‖− Ai if and only if αA ‖− Ai and αB ‖− Ai.
By the Monotonicity Lemma 3.2, since αA 6‖− A, we have α 6‖− A. ⊣

Proposition 3.8 (Explicit Definability) Let T be a formal theory, and U
be a theory of production sequents, over a language with at least one constant

symbol. Then, for all sentences ∃xAx, T ∪ U ⊢ (⇒ ∃xAx) implies T ∪ U ⊢
(⇒ At) for a closed term t.

Proof. Suppose T ∪ U 6⊢At for all closed terms. There are rooted Kripke
models Kt of T ∪ U with irreflexive roots αt such that Kt 6|=At. Form a new
model K by removing the root nodes αt from the models Kt, and adding a
new irreflexive root node α below the disjoint union of the remaining parts.
In Dα we only put the closed terms of the language, and map these into
the remaining nodes of the Kt as required. Above α we force the structure
as required by the production sequents of U and by equality. So the new
model satisfies T ∪U . It suffices to show α 6‖− At for any closed term t. But
Ax equals C[A1x, . . . , Anx] for some strictly informal logical context C and
implication and universal quantifier subformulas Aix. So for all i, α ‖− Ait
if and only if αu ‖− Ait for all u. By the Monotonicity Lemma 3.2, since
αt 6‖− At, we have α 6‖− At, for all t. So α 6‖− ∃xAx. ⊣

Formal Provability Calculus FQC is a formal theory since it is axioma-
tizable by Löb’s Axiom Schema (⊤ → A) → A ⇒ ⊤ → A. So Propositions
3.7 and 3.8 give new proofs that FQC satisfies the Disjunction Property and
Explicit Definability.

For each set of sequents U , define U⊤ to be the set of sequents ⇒ A→ B
with A⇒ B from U . So all sequents of U⊤ are formal. Obviously, U ⊢ γ for
all γ ∈ U⊤.

Proposition 3.9 Let T ∪{γ} be a set of formal sequents, and let U be a set

of production sequents. If T ∪ U ⊢ γ, then T ∪ U⊤ ⊢ γ.

Proof. Suppose T ∪ U⊤ 6⊢γ. There exists a model K of T ∪ U⊤ with
irreflexive root such that K 6|=γ. Form a new model K′ from K by replacing
the structure above the irreflexive root by only the closed terms as required by
the language (allow one variable if the language has no constant symbols), and
then forcing a structure as required by equality and the production sequents
of U . Clearly, by T ∪ {γ} being formal, K′ 6|=γ and K′ |= T . Since K |= U⊤

we have K′ |= U . ⊣

11



4 Fregean Set Theory

Basic logic allows for consistent interesting set theories that are not available
to classical mathematicians or intuitionists. Despite Brouwer’s Continuity
Theorem and Bishop’s recognition of the relevance of classical mathematics
to constructive mathematics [3, page 3], it has once been argued [18, page
16] that constructivists tend to be secure-minded, while the daring are found
among the classical mathematicians. In particular, classical mathematicians
dare to use more powerful principles and are able to prove more results, at the
risk of inconsistency. In [15] we dared to introduce a Frege-style set theory
based on the very constructive BQC. It is inconsistent. The set theory F
below is an improved version.

The Fregean set theory F is built in a first-order language with binary
relation symbols = and ∈ for equality and membership, and where for each
formula A we have a term {x | A} in the language. The number of different
free variables of A, minus x if present, determine the arity of {x | A}. We
write {x | A(x1, . . . , xn)} instead of the more standard {x | A}(x1, . . . , xn).
We identify terms that are equal up to a renaming of the bound variables. F
is axiomatized by BQC with the usual axioms for =. The hiding of structure
inside single terms requires the axiom schema of special equality

t = u⇒ {y | At} = {y | Au},

where no free variable of t or u is bound by a quantifier of Ax. Besides this
we need one technical axiom schema that involves a certain ambiguity in
our notation. Let Ax be a formula, and let t be a term whose variables are
not among the bound variables of Ax. We can construct the primitive term
{y | At} directly from At, or we can obtain a similarly looking composite
term {x | At} obtained from the primitive term {y | Ax} after substitution
of t for x. To avoid such confusion, we temporarily write composition as
{y | Ax}(t/x). The additional axiom schema of composition says that we
usually can ignore the ambiguity:

⇒ {y | At} = {y | Ax}(t/x).

Finally, for ∈, we have the Frege-style axiom schema of β-conversion:

x ∈ {x | B} ⇔ B.

This completes the axiomatization of F.
Define V = {x | ⊤} and ∅ = {x | ⊥}. Replacing ⊥ by ∅ = V , and the

axiom schema ⊥ ⇒ A by the axiom x ∈ ∅ ⇒ x ∈ y, gives us a system that is
equivalent to F: One easily shows ∅ = V ⇒ x ∈ {x | A}, thus ∅ = V ⇒ A.
So F can be axiomatized without ⊥.

The axiom schema of β-conversion has been a major source of paradoxes,
most notably Russell’s Paradox, which uses classical (even intuitionistic) logic
to show that the set {x | x ∈ x → ⊥} is member of itself exactly when it
is not. In [15] we converted the traditional proof of Russell’s Paradox into
a useful theorem. The following improved version avoids =. Let A be a
formula in which x does not occur. Define ⌈A⌉ = {x | x ∈ x→ A}.

Lemma 4.1 F satisfies the schema ⌈A⌉ ∈ ⌈A⌉ ⇒ ⊤ → A.

Proof. Use

⌈A⌉ ∈ ⌈A⌉ ⇒ (⊤ → ⌈A⌉ ∈ ⌈A⌉) ∧ (⌈A⌉ ∈ ⌈A⌉ → A)

and the transitivity of →. ⊣
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Corollary 4.2 F satisfies the schema ⇒ ⌈A⌉ ∈ ⌈⊤ → A⌉.

Theorem 4.3 F satisfies Löb’s Axiom Schema (⊤ → A) → A⇒ ⊤ → A.

Proof. Let A be a formula and let x be a variable that does not occur
in A. Then (x ∈ x → (⊤ → A)) ∧ ((⊤ → A) → A) ⇒ x ∈ x → A. So
x ∈ ⌈⊤ → A⌉ ∧ ((⊤ → A) → A) ⇒ x ∈ ⌈A⌉. Substitution of ⌈A⌉ for x gives
(⊤ → A) → A ⇒ ⌈A⌉ ∈ ⌈A⌉. Thus, by Lemma 4.1, (⊤ → A) → A ⇒ ⊤ →
A. ⊣

We show the consistency of F by means of Kripke models. Rather than
constructing a single model, we show that the class of Kripke models of F is
closed under a certain operation: For each set of Kripke models K of F we
construct a new model Kω(K) of F that is the limit of a sequence of models
Kn(K), n < ω. Among the K ∈ K we allow the ‘inconsistent’ model E with
empty set of underlying nodes. So E satisfies ⇒ ⊥. Each model Kλ, λ ≤ ω,
is constructed by adding a new irreflexive bottom node αλ below the disjoint
union of the models K ∈ K. The underlying sets Dαλ equal the set of closed
terms, that is, the set of terms without free variables and up to renaming
of the bound variables, modulo some equivalence relation. So their mapping
into the nodes of the models K ∈ K is uniquely determined. The precise
structure above αn+1 is constructed from the structure above αn, and the
structure above αω is set as the limit of the structures above αn. Construct
a sequence of theories T0 ⊆ T1 ⊆ . . . as follows. T0 is the theory axiomatized
by the set U0 of special equality and composition sequents, plus the set T
of sequents ⇒ A → B for which K |= A ⇒ B for all K ∈ K. Once Tn

has been constructed, let Tn+1 be the extension of Tn axiomatized by T plus
the set Un+1 which equals Un plus the sequents ⇒ t ∈ {x | Ax} for which
Tn ⊢ (⇒ At). Set Uω = ∪nUn, and Tω = T ∪ Uω. For all λ ≤ ω set t = u
in Dαλ if and only if Tλ ⊢ (⇒ t = u), and set αλ ‖− t ∈ u if and only if
Tλ ⊢ (⇒ t ∈ u). Obviously, K |= Uω for all K ∈ K, so the models Kλ are
Kripke models, for all λ ≤ ω.

Lemma 4.4 For all λ ≤ ω, Kλ(K) is a Kripke model such that αλ ‖− ϕ if

and only if Tλ ⊢ (⇒ ϕ).

Proof. Each theory Tλ is axiomatized by the union of a formal theory T
and a geometric theory of production sequents Uλ. We proceed by induction
on the complexity of ϕ. For atomic sentences we obviously have αλ ‖− ϕ if
and only if Tλ ⊢ (⇒ ϕ). We have αλ ‖− ϕ ∨ ψ if and only if αλ ‖− ϕ or
αλ ‖− ψ, while by Proposition 3.7 Tλ ⊢ (⇒ ϕ ∨ ψ) if and only if Tλ ⊢ (⇒ ϕ)
or Tλ ⊢ (⇒ ψ). A similar argument, using Proposition 3.8, applies in case
of existential quantification. So the induction easily passes through ∨ and ∃.
Conjunction ∧ is always simple. Suppose αλ ‖− ϕ→ ψ. Then K |= (ϕ⇒ ψ),
for all K ∈ K. So Tλ ⊇ T ⊢ (⇒ ϕ → ψ). Conversely, if Tλ ⊢ (⇒ ϕ → ψ),
then T ∪Uλ ⊢ (⇒ ϕ→ ψ), so by Proposition 3.9 T ∪U⊤

λ
⊢ (⇒ ϕ→ ψ). But

U⊤

λ
⊆ T , so αλ ‖− ϕ → ψ. The case for universal quantification ∀ is similar.

⊣

Proposition 4.5 If K is a collection of Kripke models of F, then Kω(K) is

a Kripke model of F.

Proof. It suffices to verify β-conversion. Let αω ‖− At, where no vari-
able of t is bound by a quantifier of Ax. Then αn ‖− At for some n, hence
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αn+1 ‖− t ∈ {x | Ax}. So αω ‖− t ∈ {x | Ax}. Conversely, suppose αω ‖− t ∈
{x | Ax}. Then αn+1 ‖− t ∈ {x | Ax}, hence Tn+1 ⊢ (⇒ t ∈ {x | Ax}), for
some n. By Proposition 3.4 Un+1 ⊢ (⇒ t ∈ {x | Ax}). So we must have
Tn ⊢ (⇒ At). So αω ‖− At. ⊣

Theorem 4.6 The theory F is consistent, faithful, and satisfies the Disjunc-

tion Property and Explicit Definability.

Proof. Exercise. Use the model construction Kω(K), and compare with
the proofs of Propositions 3.1, 3.7, and 3.8. ⊣

Lemma 4.1 also follows from the Fixed Point Theorem below. Because of
the peculiar way by which terms are introduced in the language of F, we can
distinguish two different versions of context. The limited version is that of
logical context as defined in Section 3. The notion of generalized context C[ ]
or C[P ] is defined by adding a propositional symbol, say P , to the language,
but then closing off not only under the usual logical operations but also under
the formation of terms {x | }. For both logical and generalized contexts we
could also introduce substitution parameters for contexts themselves, see the
example below Theorem 4.7. Substitution context parameters are used only
once, so we don’t feel the need for a special definition.

Theorem 4.7 (Fixed Point Theorem) Let C[ ] be a generalized context

in which no bound variable occurs as a free variable. Then there is a formula

W with the same free variables as C[ ] such that F satisfies

W ⇔ C[W ].

Proof. Let x be a variable that does not occur in C[ ], and let w be the
term {x | C[x ∈ x]}. Set W equal to w ∈ w. ⊣

A formula W as in Theorem 4.7 is called an (explicit) Fixed Point of the
context C[ ]. From this Theorem we derive the following universal fixed point
formula context. Consider the two-parameter context P [Q], where P is a
context parameter. Let wP be the expression {x | P [x ∈ x]}. Then F satisfies
all substitution instances of wP ∈ wP ⇔ P [wP ∈ wP ] by contexts that do
not contain x, and whose bound variables do not occur as free variables. Let
Ω be the term {x | x ∈ x}. Then, by the Fixed Point Theorem, W ≡ Ω ∈ Ω
is a fixed point of the logical context C[P ] ≡ P . But W ⇔ C[W ] (≡ W )
is a substitution instance of β-conversion as well. In the model construction
preceding Lemma 4.4 we therefore have Un+1 ⊢ (⇒ W ) exactly when Tn ⊢
(⇒ W ), exactly when Un ⊢ (⇒ W ) (by Proposition 3.4). So Tω ⊢ (⇒ W )
if and only if U0 ⊢ (⇒ W ). So Kω(K)6|=(⇒ W ), hence F6⊢(⇒ W ). A
straightforward verification shows that EF6⊢(⇒W ), for the system EF below.
This example shows that the fixed points W of Theorem 4.7 need not be
equivalent to the ‘maximal’ fixed points C[⊤]. In certain circumstances,
however, they are. Recall the definition, in Section 3, of formal parameters
in logical contexts.

Proposition 4.8 (Uniqueness) Let C[P ] be a logical context in some first-

order language in which all occurrences of P are formal, and let D be a fixed

point of C[ ] over FQC. Then FQC satisfies

D ⇔ C[⊤].
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Proof. As for FPC, see [21]: By the Substitution Schema of Section 3
we have D ⇒ C[⊤]. Conversely, by Lemma 3.3, we have C[⊤] ∧ (⊤ → D) ⇒
C[D], so C[⊤] ∧ (⊤ → D) ⇒ D. Thus, by Löb’s Rule, C[⊤] ⇒ D. ⊣

Examples: Let C[ ] be the context ( ) → A. Then w equals ⌈A⌉, and

⌈A⌉ ∈ ⌈A⌉ ⇔ ⊤ → A.

Let C[ ] be the context A → ( ). Then w equals {x | A → x ∈ x}, and
Proposition 4.8 implies ⇒ w ∈ w. Let C[ ] equal the context A↔ ( ). Then
w equals {x | A↔ x ∈ x}, and F satisfies ⊤ → A⇔ w ∈ w.

The system F lacks any form of equality among its sets except for what
is generated by special equality and composition. One may wish to include
some rule of extensionality like strong extensionality [15]:

A ∧ x ∈ y ⇒ x ∈ z A ∧ x ∈ z ⇒ x ∈ y
A⇒ y = z ,

where x is not free in A. However, a refinement of Russell’s Paradox applies.
In fact, the refined Paradox below even follows when we extend F by all
sequents

⇒ {x | A} = {x | B}

for which A ⇔ B holds in F. By the Fixed Point Theorem 4.7 there is for
each sentence A a sentence WA such that

WA ⇔ {y |WA} = {y |WA ∧A}.

Then WA ⇒ A, so also WA ⇔ WA ∧ A. If we had the additional sequents,
then this would imply ⇒ {y | WA} = {y | WA ∧ A}, and so ⇒ WA. But
then also ⇒ A. So in particular, using W⊥, we could have derived ⇒ ⊥.
One easily produces mild variations of this result. They show that even
a weak equivalent of a general extensionality rule may result in unwanted
inconsistencies or almost-inconsistencies. Still, when two formulas A and B
essentially say the same, it ought to be possible to consider the terms {x | A}
and {x | B} equal. This is the motivation behind the following partial version
of extensionality. The system E is the theory axiomatized by special equality,
composition, and by all sequents

⇒ {x | A} = {x | B}

for which A⇔ B holds in FQC. We write EF as short for E ∪ F.

Proposition 4.9 The theory EF is consistent, faithful, and satisfies the Dis-

junction Property and Explicit Definability.

Proof. We map the language of EF into itself in such a way that equiva-
lent terms are mapped to identical terms. The map is a composition of two
other maps, t and u. Map u replaces all compositions {x | Ax}(t/x) inside
formulas by {x | At}. The relation E ⊢ (A⇔ B) is an equivalence on the set
of function symbols {x | A}, {x | B} of the language. From each equivalence
class pick a representative with the least number of free variables in such
a way that this picking function commutes with renaming of free variables.
Map t is a projection that maps each formula in the image of u to the for-
mula where all function symbols have been replaced by the representatives
of their equivalence classes. Form the set T of sequents A ⇒ B such that
tuA ⇒ tuB holds in F. One easily verifies that T is closed under the rules
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and sequents of BQC. Special equality, composition, and β-conversion for T
follow from those for F. Since EF ⊆ T , we have consistency for EF. But EF
satisfies A⇔ tuA, so EF and T are equal. Finally, T inherits the Disjunction
Property and Explicit Definability from F, so EF satisfies these too. ⊣

The extension EF of F is fairly simple. For the following further extension
of EF, called EF+, we don’t have a consistency proof. To avoid the paradox
with extensionality, we only allow it for formal formulas. For that purpose
we present extensionality in the form

A ∧B ⇒ C A ∧ C ⇒ B
A⇒ {x | B} = {x | C}

,

where x is not free in A. To maintain → as a proper reflection of ⇒ we must
add the matching sequent schema [15], in this case

(A ∧B → C) ∧ (A ∧ C → B) ⇒ A→ {x | B} = {x | C},

where x is not free in A. Now EF+ is the extension of EF with the above
rule and sequent of extensionality under the additional restriction that B
and C are formal. So the paradoxical proof with extensionality is blocked.
A further possible extension of EF+ includes adding η-conversion

⇒ y = {x | x ∈ y}.

An alternative to above solution to the conflict between β-conversion and
extensionality is weakening β-conversion instead. There are many possible
approaches along such lines, and below we sketch only a few. For instance,
consider the system F− that is axiomatized by special equality and compo-
sition, and by the weakened schema of β-conversion

x ∈ {x | B} ⇔ ⊤ → B,

(Exercise: The ‘weakening’ ⊤ → x ∈ {x | B} ⇔ B is inconsistent.) Over
this limited system generalized contexts C[ ] have weak fixed points W only,
that is, formulas W such that

W ⇔ ⊤ → C[W ].

The construction of W is identical to the one in the proof of the Fixed Point
Theorem 4.7: Let w be {x | C[x ∈ x]}, x a new variable, and set W equal
to w ∈ w. Remarkably, Löb’s Axiom Schema still follows from a, slightly
modified, ‘Russell Proof.’ Let A be a formula in which x does not occur, and
let ⌈A⌉ be short for {x | x ∈ x→ A}. By weak β-conversion we have

⌈A⌉ ∈ ⌈A⌉ ⇒ ⊤ → (⊤ → A).

So
((⊤ → A) → A) ∧ ⌈A⌉ ∈ ⌈A⌉ ⇒ ⊤ → A,

and thus (⊤ → A) → A ⇒ ⌈A⌉ ∈ ⌈⊤ → A⌉. Now (⊤ → (x ∈ x → (⊤ →
A)))∧((⊤ → A) → A) ⇒ ⊤ → (x ∈ x→ A). So x ∈ ⌈⊤ → A⌉∧((⊤ → A) →
A) ⇒ x ∈ ⌈A⌉. Substitution of ⌈A⌉ for x gives (⊤ → A) → A⇒ ⌈A⌉ ∈ ⌈A⌉.
Thus (⊤ → A) → A⇒ ⊤ → A.

We could add full extensionality to the system F−, but we may obtain
stronger systems if we first embed F− into the system G− below. This
embedding illustrates that the notation {x | B} hides the syntactic form B

16



on the inside from the first-order logic on the outside. Let G− be the system
axiomatized by special equality, composition, and the usual β-conversion for
formulas of the form ⊤ → B only:

x ∈ {x | ⊤ → B} ⇔ ⊤ → B.

The system F− is easily seen to be embeddable into the system G−: Just
map formulas A to At in such a way that ( )t commutes with all logical
operations, equality, and membership, and such that terms {x | B}t equal
{x | ⊤ → Bt}. Clearly, (F−)t ⊆ G−, and G− satisfies Löb’s Axiom. We
conjecture that this embedding is conservative: A ⇒ B holds in F− if and
only if At ⇒ Bt holds in G−.

Let G be the extension of G− axiomatized by special equality, composi-
tion, and β-conversion for formal formulas only:

x ∈ {x | B} ⇔ B

for all formal formulas B. Let EG be the extension of G by full extensionality.

A ∧B ⇒ C A ∧ C ⇒ B
A⇒ {x | B} = {x | C}

,

where x is not free in A. Again, to maintain → as a proper reflection of ⇒,
we add the matching sequent schema

(A ∧B → C) ∧ (A ∧ C → B) ⇒ A→ {x | B} = {x | C},

where x is not free in A. This completes the axiomatization of EG.
Over G and EG formal generalized contexts C[ ] have fixed points W ,

that is, formulas W such that G (or EG) satisfies

W ⇔ C[W ].

The paradox that came with extensionality now turns into a second proof of
Löb’s Axiom Schema for EG. Let A be a formula in which x does not occur.
By the weak fixed point result there is a sentence WA such that

WA ⇔ ⊤ → {x | ⊤ → WA} = {x | ⊤ →WA ∧A}.

So we have WA ⇒ ⊤ → (⊤ → A), so ⇒WA → (⊤ → (⊤ → A)). Then

(⊤ → A) → A⇒WA → A;

(⊤ → A) → A⇒WA ↔WA ∧A;

(⊤ → A) → A⇒ (⊤ →WA) ↔ (⊤ →WA ∧A);

(⊤ → A) → A⇒ ⊤ → {x | ⊤ →WA} = {x | ⊤ →WA ∧A};

(⊤ → A) → A⇒WA; and thus

(⊤ → A) → A⇒ ⊤ → A.

We don’t have a consistency proof for EG. We conjecture that consistency
of EG and EF+ may be proven using Church-Rosser techniques from the
λ-calculus.

All Fregean set theories that we showed to be consistent, or that we
conjecture to be so, satisfy FQC. Each formula of FQC is equivalent to a
logical context C[P1, . . . , Pn] in the obvious way by replacing all propositional
constants by new context symbols. A formula holds in F (or EF, or G, and
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so on) if all substitution instances of its corresponding logical context in the
language of F (or EF, etc.) are derivable from F (or EF, etc.). One can show,
by combining the construction preceding Lemma 4.4 with [21, Theorem 2.2],
that the collection of propositional sequents that hold in F forms exactly the
theory FPC. We conjecture that the same holds, with FQC, for all Fregean
set theories considered.
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