
Boolean Algebras in

Visser Algebras

Majid Alizadeh

School of Mathematics, Statistics and Computer Science
College of Science, University of Tehran

P. O. Box 14155-6455
Tehran, Iran

e-mail: malizadeh@khayam.ut.ac.ir

Mohammad Ardeshir

Department of Mathematics, Sharif University of Technology
P.O. Box 11365-9415

Tehran, Iran
e-mail: mardeshir@sharif.edu

Wim Ruitenburg

Department of Mathematics, Statistics and Computer Science
Marquette University

P.O. Box 1881
Milwaukee, WI 53201, USA
e-mail: wimr@mscs.mu.edu

Abstract

We generalize the double negation construction of Boolean algebras
in Heyting algebras, to a double negation construction of the same in
Visser algebras (also known as basic algebras). This result allows us to
generalize Glivenko’s Theorem from intuitionistic propositional logic
and Heyting algebras to Visser’s basic propositional logic and Visser
algebras.
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1 Introduction

Basic Propositional Calculus BPC, which was introduced by Albert Visser
in [5], captures a sublogic of Intuitionistic Propositional Calculus IPC which
corresponds with modal logic K4 in essentially the same way that IPC cor-
responds with modal logic S4. In [3] and [4] we introduce Visser algebras
(where we named them basic algebras), which correspond with BPC in the
same way that Heyting algebras correspond with IPC and that Boolean al-
gebras correspond with Classical Propositional Calculus CPC. In Appendix
A we present axiomatizations and some elementary properties of both BPC
and Visser algebras.

The double negation construction of Boolean algebras from Heyting al-
gebras is well-known. It is natural to consider how closely one can repeat
this construction over Visser algebras. Surprisingly the end result still works,
although in details we use several new ideas.

Glivenko’s Theorem also goes through, but with an interesting reformu-
lation. Given propositional formula ψ, define ξ(ψ) := ((⊤ → ψ) → ψ) →
(⊤ → ψ). Formulas ξ(ψ) are of interest in their own right, see [4, page 323].
Over IPC, formulas ψ and ξ(ψ) are equivalent. So, in particular, IPC proves
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¬ξ(⊥). With Theorem 4.7 we show that for all (sequent) theories Γ ⊇ BPC
we have

Γ proves ϕ→ ξ(⊥) if and only if Γ+CPC proves ϕ→ ξ(⊥).

So if Γ ⊇ IPC, then Γ proves ¬ϕ if and only if Γ+CPC proves ¬ϕ (Glivenko’s
Theorem).

2 Boolean Algebras

A definition and some key properties of Visser algebras are presented in
Appendix A. For the purposes of this paper we introduce notations ✷a for
1 → a, and xa for x → a. So ✷✷a = 1 → (1 → a), and xaaa = ((x → a) →
a) → a. For all terms t(x) built from the defining functions of A = (A,∧,∨,→
, 0, 1) and the elements A, and for all x ∈ A, we have x ∧ t(x) = x ∧ t(1)
(simple substitution). For example, x ∧ (x ∧ y)a = x ∧ (1 ∧ y)a = x ∧ ya.
Positive and negative occurrences in formulas and terms are defined in the
usual way. If x is only positive in t(x), then x ≤ y implies t(x) ≤ t(y). For
example, xaa ≤ ✷a → a. If x is only negative in t(x), then x ≤ y implies
t(y) ≤ t(x). For example, ✷a ≤ xa.

An element a is called Heyting if ✷a = a. A Visser algebra is a Heyting
algebra exactly when all its elements are Heyting. Since a ≤ ✷a for all a we
have that 1 is always Heyting, but 0 need not be Heyting.

Proposition 2.1. Let a be an element of Visser algebra A. Then

1. (x ∧ y)a ≤ x→ ya ≤ (x ∧ y)✷a

2. (x ∧ y)aa = xaa ∧ yaa

Proof. Item 1: First, (x ∧ y)a ∧ x = ya ∧ x ≤ ya, so (x ∧ y)a ≤ x → ya.
Second, x ∧ y ≤ x implies x → ya = x → (y → a) ≤ (x ∧ y) → (y → a) =
(x ∧ y) → (1 → a) = (x ∧ y)✷a.

Item 2: Direction (x ∧ y)aa ≤ xaa ∧ yaa is immediate from the positive
positions of x and y. For the other direction, with (x → ya) ∧ yaa ≤ xa and
item 1 we get xaa ∧ yaa ∧ (x ∧ y)a ≤ xaa ∧ yaa ∧ (x → ya) ≤ xaa ∧ xa =
✷a ∧ xa = ✷a. So xaa ∧ yaa ≤ (x ∧ y)a → ✷a. From the positive position of
x we get xaa ≤ ✷a→ a. Thus, with transitivity, xaa ∧ yaa ≤ (x ∧ y)aa.

Let a ∈ A. An element x is called a-regular if xaa = x. Let Ra(A) be
the set of a-regular elements of A. Clearly we have {xa : x ∈ A} ⊇ {xaa :
x ∈ A} ⊇ {xaaa : x ∈ A} ⊇ . . . ⊇ Ra(A). Since x is positive in xaa and
0aa = ✷a and 1aa = ✷a → a, we also have Ra(A) ⊆ [✷a,✷a → a]. The set
Ra(A) inherits a partial order from A.

Proposition 2.2. Let a be an element of Visser algebra A. Then

1. x ∈ Ra(A) implies xa ∈ Ra(A)

2. ✷a ∈ Ra(A) (this is [4, Proposition 2.12])

3. ✷a→ a ∈ Ra(A)

4. x, y ∈ Ra(A) implies x ∧ y ∈ Ra(A)
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Proof. Item 1 is immediate, since xaa = x implies xaaa = xa.
Item 2: By positivity of ✷a we have (✷a → a) → a ≤ ✷a → a, so with

simple substitution (✷a→ a) → a ≤ ✷a. Thus (✷a)aa = ✷a.
Item 3 is immediate from items 1 and 2.
Item 4 is Proposition 2.1.2.

So Ra(A) inherits top and bottom from interval [✷a,✷a → a], and is
closed under ∧. We show below that closure under x 7→ xa essentially means
closure under (relative) complement.

Given a ∈ A, define x ∨a y = (x ∨ y)aa.

Proposition 2.3. Let a be an element of Visser algebra A. Then

1. x, y ∈ Ra(A) implies x ∨a y ∈ Ra(A)

2. x, y ∈ Ra(A) implies x ∨ y ≤ x ∨a y

3. z ∈ Ra(A) plus x ∨ y ≤ z imply x ∨a y ≤ z

4. x ∈ Ra(A) implies x ∧ (y ∨a z) = (x ∧ y) ∨a (x ∧ z)

Proof. Item 1: x ∨a y = (xa ∧ ya)a. Apply Propositions 2.2.1 and 2.2.4.
Item 2: With positivity, x ∨ y = xaa ∨ yaa ≤ (x ∨ y)aa = x ∨a y.
Item 3: x ∨ y ≤ z implies x ∨a y ≤ zaa = z.
Item 4: With Proposition 2.1.2, x∧ (y ∨a z) = xaa ∧ (y ∨ z)aa = (x∧ (y ∨

z))aa = ((x ∧ y) ∨ (x ∧ z))aa = (x ∧ y) ∨a (x ∧ z).

Given a ∈ A, define x →a y = xa ∨a y. Let R
a(A) be structure

(Ra(A),∧,∨a,→a,✷a,✷a → a). By Propositions 2.2 and 2.3.1, this struc-
ture is well-defined.

Theorem 2.4. Let a be an element of Visser algebra A. Then R
a(A) is a

Boolean algebra.

Proof. By Propositions 2.2.2, 2.2.3, 2.2.4, and 2.3, (Ra(A),∧,∨a,✷a,✷a →
a) is a bounded distributive lattice. So it suffices to show that x 7→ xa gives
a (relative) Boolean complement.

For all x we have x ∧ xa = x ∧ ✷a. In case x ∈ Ra(A) this means
x ∧ xa = ✷a and so x and xa are relatively disjoint.

Suppose x and y are such that both x ≤ y and xa ≤ y. Then ya ≤ xa ≤ y,
so ya ≤ ✷a and so ya = ✷a. So also yaa = ✷a→ a. So if x ≤ y plus xa ≤ y
plus y ∈ Ra(A), then y = ✷a→ a, the largest element of Ra(A).

3 Boolean Elements and Morphisms

We have a further characterization of the elements of Ra(A) which allows us
to find an idempotent Visser algebra morphism from the ‘subalgebra’ of A
on interval [a, 1], onto R

a(A).

Proposition 3.1. Let a be an element of Visser algebra A. Then

1. x ∧ xaa = x ∧ (✷a→ a) (so x ≤ ✷a→ a if and only if x ≤ xaa)

2. ✷a ≤ x implies xa ≤ xaaa

3. xaaa = xa ∧ (✷a→ a)

4. xaaaa = xaa
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5. Ra(A) = {xaa : x ∈ A}

Proof. Item 1 is immediate by simple substitution.
Item 2: ✷a ≤ x implies xa ≤ ✷a→ a. Apply item 1.
Item 3: By simple substitution of xa we have xa ∧ xaaa = xa ∧ (✷a→ a).

So xaaa ≥ xa ∧ (✷a → a). For the other direction, inequality x ∧ (✷a →
a) ≤ xaa of item 1 implies xaaa ≤ (x ∧ (✷a → a))a. From positivity of xa

we get xaaa ≤ ✷a → a. Thus, with simple substitution, xaaa ≤ (✷a →
a) ∧ (x ∧ (✷a→ a))a = (✷a→ a) ∧ xa.

Item 4: For all x we have xaa ≤ ✷a → a. Apply item 3 with x replaced
by xa.

Item 5 is immediate from item 4.

Proposition 3.1.3 may be viewed as the natural generalization of Brouwer’s
triple negation theorem. If a is Heyting, then it yields xaaa = xa for all x,
and so Ra(A) = {xa : x ∈ A}.

Now we have the tools to present an idempotent Visser algebra morphism
from subinterval [a, 1] of A onto R

a(A).

First some facts about Visser algebras on intervals. Let a, b ∈ A be with
a ≤ b. We construct a Visser algebra I

[a,b](A) on interval [a, b] as follows.
Define x→I y = (x→ y)∧b. Define I[a,b](A) = ([a, b],∧,∨,→I , a, b). Clearly
I
[a,b](A) is well-defined. The map π[a,b] : x 7→ (x ∧ b) ∨ a = (x ∨ a) ∧ b is

a well-defined map from A onto [a, b]. If b = 1, then x →I y = x → y, so
I
[a,1](A) is clearly a Visser algebra, and is a subalgebra of A except for the

bottom element.

Proposition 3.2. Let a ≤ b be elements of Visser algebra A. Then I
[a,b](A)

is a Visser algebra, and π[a,b] is an idempotent bounded distributive lattice

morphism from A onto I
[a,b](A).

Proof. The bounded distributive lattice properties are well-known. One eas-
ily verifies the defining Visser algebra properties of Appendix A for arrow
x→I y.

Map π[a,b] need not respect arrows even when A is a Heyting algebra and
b = 1, since π[a,1](x → y) = (x → y) ∨ a and π[a,1](x) →I π[a,1](y) = x →
(y ∨ a) need not be the same.

Finally the morphism of primary interest. Let a ∈ A. Define map γa :
A → Ra(A) by γa(x) = xaa. By Proposition 3.1.5, map γa is well-defined.
We are primarily interested in γa with restriction to subdomain [a, 1].

Proposition 3.3. Let a and b be elements of Visser algebra A. Then

1. (xaa ∨ yaa)aa = (x ∨ y)aa

2. (x→ (b ∨ y))a ≤ ((x→ b) ∨ y)a

3. (x→ (a ∨ y))a = ((x→ a) ∨ y)a

Proof. Item 1: With Propositions 2.1.2 and 3.1.4 we have (xaa ∨ yaa)aa =
(xaaa ∧ yaaa)a = (xa ∧ ya)aaa = (x ∨ y)aaaa = (x ∨ y)aa.

Item 2 immediately follows from (x→ b) ∨ y ≤ x→ (b ∨ y).
Item 3: By item 2 we need only show one direction. Since (a ∨ y)a = ya

we have (x→ (a ∨ y))a ≥ (x→ (a ∨ y))a ∧ ya = ((x→ (a ∨ y)) ∧ ((a ∨ y) →
a))a ∧ ya ≥ (xa)a ∧ ya = ((x→ a) ∨ y)a.
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Theorem 3.4. Let a be an element of Visser algebra A. Then γa is an
idempotent Visser algebra morphism from I

[a,1](A) onto R
a(A).

Proof. Preservation of top 1, bottom a, and conjunction are easy. Onto
and idempotency of γa follow from Propositions 3.1.4 and 3.1.5. Equation
γa(x ∨ y) = γa(x) ∨a γa(y) is Proposition 3.3.1. Finally, let y ∈ [a, 1]. Then
a ≤ y, so with Proposition 3.3.3 we have (x → y)a = (xa ∨ y)a. Combined
with Proposition 3.3.1 we then have γa(x → y) = (x → y)aa = (xa ∨ y)aa =
(xaaa ∨ yaa)aa = γa(x) →a γa(y).

Map γa : A → R
a(A) is an idempotent onto bounded lattice morphism

with γa(x → y) = (x → y)aa ≤ (x → (a ∨ y))aa = (xa ∨ y)aa = γa(x) →a

γa(y). In general these two expressions are not equal, even when A is a
Heyting algebra.

4 Glivenko Theorems

Let A be a bounded distributive lattice with binary function x→ y satisfying
x → y = 1 for all x, y ∈ A. Then A is clearly a Visser algebra. All Visser
algebras satisfying ✷0 = 1 can so be obtained from bounded distributive
lattices. They belong to the very interesting collection of Visser algebras that
satisfy the principle of excluded middle x ∨ x0 = 1, a collection which was
essentially introduced in [3] (see also [4, Proposition 5.11]). So the principle
of excluded middle is not sufficient to yield just Boolean algebras. Therefore
the following is not completely self-evident.

Proposition 4.1. Let Visser algebra A satisfy the schema of double negation
elimination x00 ≤ x. Then A is a Boolean algebra.

Proof. Clearly ✷0 = 000 ≤ 0, so ✷0 = 0. Let x ∈ A. Then ✷x ∧ x0 ≤ ✷0
= 0, so ✷x ≤ x00 ≤ x. So A is a Heyting algebra satisfying double negation
elimination, and thus is a Boolean algebra.

The Glivenko Theorems we describe below, involve inverse images of ✷0
and ✷0 → 0 under the Visser algebra morphisms γ0 : A → R

0(A) of Sec-
tion 3 (note that I

[0,1](A) = A). We use the following defined term in the
description of these inverse images.

For Visser algebra elements a, define ξ(a) = (✷a→ a) → ✷a.

Proposition 4.2. Let a be an element of Visser algebra A. Then

1. ξ(a) ∧ (✷a→ a) = ✷a

2. ✷ξ(a) = ξ(a) (this is [4, Proposition 2.11])

3. x→ ξ(a) = 1 if and only if x ≤ ξ(a)

4. ξ(a) → a = ✷a→ a

Proof. Item 1: With simple substitution, ξ(a) ∧ (✷a → a) = ✷✷a ∧ (✷a →
a) ≤ ✷a.

Item 2: By item 1 we have 1 = ξ(a) ∧ (✷a → a) → ✷a. So ✷ξ(a) ≤
(✷a→ a) → ξ(a) = (✷a→ a) → ξ(a) ∧ (✷a→ a) = (✷a→ a) → ✷a = ξ(a).

Item 3: From right to left is immediate. For the converse, suppose x →
ξ(a) = 1. Then with item 2 we have x = x ∧ (x→ ξ(a)) = x ∧✷ξ(a) ≤ ξ(a).

Item 4: Obviously ξ(a) → a ≤ ✷a → a. Conversely, with item 1 and
simple substitution we have (✷a → a) ∧ (ξ(a) → a) = (✷a → a) ∧ (ξ(a) ∧
(✷a→ a) → a) = (✷a→ a) ∧ (✷a→ a).
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Proposition 4.3. Let a be an element of Visser algebra A. Then

✷a→ a ≤ xa if and only if xaa = ✷a if and only if x ≤ ξ(a)

Proof. With Propositions 2.2.2 and 3.1.3 we have ✷a → a ≤ xa implies
xaa ≤ (✷a)aa = ✷a (and so xaa = ✷a) implies ✷a → a ≤ xaaa ≤ xa. So the
first two statements are equivalent. By Proposition 4.2.4 we have x ≤ ξ(a)
implies ✷a → a ≤ x → a. So the third statement implies the first. For the
converse, suppose the first statement. Then x ∧ (✷a → a) ≤ x ∧ xa ≤ ✷a.
So x ≤ (✷a→ a) → ✷a = ξ(a).

So the inverse image of ✷a under γa is the principal ideal [0, ξ(a)].

Theorem 4.4. Let a be an element of Visser algebra A, and γa(x) = xaa

be the idempotent bounded distributive lattice morphism from A onto R
a(A).

Then γ−1
a (✷a) = {x ∈ A : xξ(a) = 1} and γ−1

a (✷a → a) = {x ∈ A :
xaξ(a) = 1}.

Proof. With Propositions 4.3 and 4.2.3 we have γa(x) = ✷a if and only if
xξ(a) = 1. Similarly, γa(x) = ✷a→ a if and only if xaa = ✷a→ a if and only
if (use Propositions 2.2.2 and 3.1.4) xaaa = ✷a if and only if (Proposition
4.3) xa ≤ ξ(a) if and only if (Proposition 4.2.3) xaξ(a) = 1.

Fix a propositional language L. With its presentation in [3] (see also
[4, Proposition 2.4]), the Lindenbaum algebra of basic propositional logic
BPC is isomorphic in the natural way with the free Visser algebra on the
set of propositional letters of L. Sequent theories Γ ⊇ BPC correspond with
adding equations between (equivalence classes of) formulas of L. Examples
are intuitionistic propositional logic Γ = IPC, which is axiomatizable by
schema ⊤ → ϕ ⇒ ϕ, and classical propositional logic Γ = CPC, which is
axiomatizable by schema (ϕ → ⊥) → ⊥ ⇒ ϕ, also written as ¬¬ϕ ⇒ ϕ.
Write AΓ for the Lindenbaum Visser algebra of Γ, with elements [ϕ]Γ =
{ψ ∈ L : Γ ⊢ ψ ⇔ ϕ}. Given sequent theories Γ ⊆ ∆, the map πΓ

∆ :
[ϕ]Γ 7→ [ϕ]∆ is a Visser algebra morphism from AΓ onto A∆. A Visser
algebra morphism µ : A → B induces a congruence on A in the usual way by
x ∼ y exactly when µ(x) = µ(y). If A = AΓ for some sequent theory Γ, then
∆(µ) = {ϕ⇒ ψ : [ϕ]Γ ∼ [ϕ ∧ ψ]Γ} is the unique sequent theory containing
Γ such that AΓ/(∼) ∼= A∆(µ) by the usual isomorphism [[ϕ]Γ]∼ 7→ [ϕ]∆(µ).
We call ∆(µ) the congruence theory implied by µ. Given sequent theories
Γ ⊆ ∆ ⊆ ∆(µ), map ν([ϕ]∆) = µ([ϕ]Γ) is the unique function (and Visser
algebra morphism) that makes the following diagram commute.

AΓ

πΓ
∆

��

µ
// B

A∆

∃! ν

>>
~

~
~

~
~

~
~

~
~

~
~

~
~

~
~

~
~

where ν is an isomorphism exactly when ∆ = ∆(µ).
Given element a of Visser algebra A, we have Ra(A) ⊆ A. So each

function µ from A uniquely determines a restricted function µa from R
a(A).

Let µ : A → B be a Visser algebra morphism. Then the following diagram
commutes, with µa(x

aa) = µ(x)µ(a)µ(a).
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A

µ

��

γa
// Ra(A)

µa

��
B

γµ(a)
// Rµ(a)(B)

The following is not immediately self-evident since the idempotent onto maps
γa and γµ(a) need not be Visser algebra morphisms.

Proposition 4.5. Let a be element of Visser algebra A, and µ : A → B be
a Visser algebra morphism. Then µa is a Visser algebra morphism.

Proof. This is essentially immediate from the definition of the Boolean al-
gebra in terms of the defining functions of the original Visser algebra. For
example, µa(x ∨a y) = µ(x ∨a y) = µ((x ∨ y)aa) = (µ(x) ∨ µ(y))µ(a)µ(a) =
µa(x) ∨µ(a) µa(y).

So map µa is also a Boolean algebra morphism.

Proposition 4.6. Let Γ be a sequent theory. Then the congruence theory
implied by γ0 : AΓ → R

0(AΓ) equals Γ + CPC.

Proof. By Proposition 3.1.4 we have γ0([ϕ]Γ) = γ0([¬¬ϕ]Γ). So Γ ∪ CPC ⊆
∆(γ0). Consider the following diagram.

AΓ

π

��

γ0
// R0(AΓ)

π0

��
AΓ+CPC

γ0 = id
//

∃! ν

::
u

u
u

u
u

u
u

u
u

u
u

u
u

u
u

u
u

u
u

u
u

R
0(AΓ+CPC)

where π is short for πΓ
Γ+CPC. The bottom γ0 is clearly an identity between

Boolean algebras. The outer square and the top left triangle both commute.
An easy diagram chase plus π onto gives that the lower right triangle also
commutes. So π0ν = 1. Since γ0 is onto, ν is also onto. With ν = νπ0ν
this gives νπ0 = 1. Thus ν is a Visser algebra isomorphism, and Γ+CPC =
∆(γ0),

This is essentially all we need to generalize the Glivenko Theorems from
IPC to BPC. We employ the following notations for formulas and sequent
theories over BPC.

We write Γ ⊢ ϕ as short for Γ ⊢ (⊤ ⇒ ϕ). This agrees with default
practice over IPC, where, with modus ponens, ϕ ⇒ ψ and ⊤ ⇒ ϕ → ψ are
provably equivalent. So intuitionistic theories can ignore sets of sequents in
favor of sets of formulas, by simply dropping the ⊤ ⇒ part.

Define ξ(ϕ) as short for ((⊤ → ϕ) → ϕ) → (⊤ → ϕ). This is in agreement
with the function ξ over Visser algebras of the form AΓ, since ξ([ϕ]Γ) =
[ξ(ϕ)]Γ.

Theorem 4.7. Let Γ be a sequent theory over BPC. Then for all formulas
ϕ we have

1. Γ ⊢ ϕ→ ξ(⊥) if and only if Γ + CPC ⊢ ϕ→ ⊥
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2. Γ ⊢ (ϕ→ ⊥) → ξ(⊥) if and only if Γ + CPC ⊢ ϕ

Proof. Item 1: Γ ⊢ ϕ → ξ(⊥) if and only if [ϕ]
ξ(0)
Γ = 1 in AΓ if and

only if (Theorem 4.4) [ϕ]00Γ = 0 in R
0(AΓ) if and only if (Proposition 4.6)

[ϕ]Γ+CPC = 0 in AΓ+CPC if and only if Γ + CPC ⊢ ϕ→ ⊥.
Item 2: By item 1 we have Γ ⊢ (ϕ→ ⊥) → ξ(⊥) if and only if Γ+CPC ⊢

(ϕ → ⊥) → ⊥. Apply double negation elimination over CPC.

Since IPC ⊢ ((⊤ → ϕ) ⇔ ϕ), we have IPC ⊢ (ξ(ϕ) ⇔ ϕ). In particular,
IPC ⊢ ¬ξ(⊥). So over IPC, Theorem 4.7 reduces to the well-known:

Theorem 4.8 (Glivenko). Let Γ be a theory over IPC. Then for all formulas
ϕ we have

1. Γ ⊢ ¬ϕ if and only if Γ + CPC ⊢ ¬ϕ

2. Γ ⊢ ¬¬ϕ if and only if Γ + CPC ⊢ ϕ

A Appendix. Axioms and Algebras

We choose an axiomatization of Basic Propositional Calculus BPC using
sequents. We briefly recall some relevant points from [4]. Our formulas
are built from propositional variables using ⊤, ⊥, ϕ ∧ ψ, ϕ ∨ ψ, and ϕ→ ψ.
Negation ¬ϕ and bi-implication ϕ↔ ψ are defined in the usual way by ϕ→ ⊥
and (ϕ→ ψ) ∧ (ψ → ϕ) respectively. Symbols ⊤ and ⊥ are both atoms and
nullary connectives. The foundation of our sequent theories is a collection of
closure rules which, on its own, generates a bounded distributive prelattice
with preorder ⇒, on the collection of formulas. In each rule below, a single
horizontal line means that if the sequents above the line hold, then so do the
ones below the line. A rule with multiple conclusions is an abbreviation for
several rules with single conclusions. A double line means the same as a single
line, but in both directions, so is really an abbreviation for two (possibly
abbreviated) rules. The absence of a line means that the conclusion holds
without premiss. So sequents are identifiable as special rules. Here they are:

ϕ⇒ ϕ reflexivity,

ϕ⇒ ψ ψ ⇒ θ
ϕ⇒ θ

transitivity,

ϕ⇒ ⊤ ⊥ ⇒ ϕ top and bottom,

ϕ⇒ ψ ϕ⇒ θ
ϕ⇒ ψ ∧ θ

ψ ⇒ ϕ θ ⇒ ϕ
ψ ∨ θ ⇒ ϕ

meet and join,

ϕ ∧ (ψ ∨ θ) ⇒ (ϕ ∧ ψ) ∨ (ϕ ∧ θ) distributivity, and

ϕ ∧ ψ ⇒ θ
ϕ⇒ ψ → θ

implication introduction.

If in the implication introduction rule we were to replace the single horizontal
line by a double line, we essentially add modus ponens to the system and
so get Intuitionistic Propositional Calculus IPC. In the absence of modus
ponens we need to add the ‘formalized’ versions of some of the rules of ⇒:

(ϕ→ ψ) ∧ (ψ → θ) ⇒ ϕ→ θ formal transitivity,

(ϕ→ ψ) ∧ (ϕ→ θ) ⇒ ϕ→ (ψ ∧ θ) formal meet, and
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(ψ → ϕ) ∧ (θ → ϕ) ⇒ (ψ ∨ θ) → ϕ formal join.

This completes the axiomatization of BPC. It is possible to define theories
over BPC in terms of adding rules. For the purposes of this paper we restrict
ourselves to theories that are obtained by only adding sequents (or: rules
without premiss). Examples are IPC, which is axiomatizable by adding the
schema (⊤ → ϕ) ⇒ ϕ, and CPC, which is axiomatizable by adding the
schema ((ϕ→ ⊥) → ⊥) ⇒ ϕ.

A Visser algebra A = (A,∧,∨,→, 0, 1) (called a basic algebra in [1, 2, 3, 4])
is a bounded distributive lattice (A,∧,∨, 0, 1) with an arrow satisfying the
schemas

(a→ b ∧ c) = (a→ b) ∧ (a→ c)
(b ∨ c→ a) = (b→ a) ∧ (c→ a)
(a→ a) = 1
a ≤ (1 → a)
(a→ b) ∧ (b→ c) ≤ (a→ c) (transitivity)

where ≤ is the usual order relation implied by the lattice. This completes
the axiomatization of a Visser algebra. A Heyting algebra is a Visser algebra
satisfying the extra schema (1 → a) = a. Visser algebras need not be Heyting
algebras, but they always satisfy:

a ∧ b ≤ c implies a ≤ b→ c

Further such properties can be found in [4], [1], or [2].
Visser algebra morphisms preserve sequent theories. For example, the im-

age of a Heyting algebra under a Visser algebra morphism is again a Heyting
algebra. The same applies to Boolean algebras.
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