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Latarres are essentially defined as LATtices with an ARRow.
Language (⊓,⊔,_). A lattice with respect to ⊓ and ⊔. Arrow
properties:

x _ y = (x ⊔ y) _ y

x _ y = x _ (x ⊓ y)
y ✂ z implies x _ y ✂ x _ z

y ✂ z implies z _ x ✂ y _ x

(x _ y) ⊓ (y _ z) ✂ x _ z

where ✂ is the definable order.
Axiomatize with equations. Language (⊓,⊔, ε,_), with ‘tech-
nical’ ε. Universal algebra axioms are lattice axioms plus:

N1. x _ y = (x ⊔ y) _ y

N2. x _ y = x _ (x ⊓ y)

N3. x _ (x ⊓ y ⊓ z) ✂ x _ (x ⊓ y)

N4. y _ (y ⊓ z) ✂ (x ⊓ y) _ (x ⊓ y ⊓ z)
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N5. (x _ (x ⊓ y)) ⊓ ((x ⊓ y) _ (x ⊓ y ⊓ z)) ✂ x _ (x ⊓ y ⊓ z)

N6. ε _ ε = ε

A latarre if unitary if the lattice has a top 1 and ε = 1.
As example, define a unitary latarre on lattice N5 as follows.

In the diagram, labels x, y, and z mean that we set 1 _ b = y,
set b _ a = z, and so on. The letters x, y and z are values
to be chosen freely from among the set of elements {0, a, b, p, 1}
with the only restrictions that x ✂ z and y ✂ z.
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We inductively define ∇0x = x and ∇n+1x = ε _ ∇nx. An
x occurs at depth n ≥ 0 in term t(x) if x occurs n levels deep
inside implication subformulas of implication subformulas and
so on (so x occurs at depth n in ∇nx). An x occurs informally
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if depth n = 0, otherwise x occurs formally. Obviously informal
occurrences are always positive.

Proposition 0.1. Let a, b, c, and d be elements of a latarre
A. Then

1. a _ (b ⊓ c) = (a _ b) ⊓ (a _ c)

2. (b ⊔ c) _ a = (b _ a) ⊓ (c _ a)

3. (a _ b) ⊓ (b _ c) = (a ⊔ b) _ (b ⊓ c)

4. (a ⊔ b) ☎ c ☎ b implies (a ⊔ b) _ c = a _ (a ⊓ c) = a _ c

5. a ☎ c ☎ a ⊓ b implies c _ (a ⊓ b) = (c ⊔ b) _ b = c _ b

6. a _ b ✂ ε

7. a _ a = ε

8. a ✂ b implies a _ b = ε

9. a _ b = ε implies c _ a ✂ c _ b and b _ c ✂ a _ c

10. Suppose c _ a ✂ (a _ b) ⊓ (b _ c). Then (c _ a) =
(c _ b) ⊓ (b _ a). In particular, if c ☎ b ☎ a, then
(c _ a) = (c _ b) ⊓ (b _ a)
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11. b _ c ✂ (a ⊓ b) _ (a ⊓ c)

12. (b _ a) ⊓ ((a ⊓ b) _ (a ⊓ c)) = (b _ a) ⊓ (b _ c)

13. d ⊓ ε = d ⊓ (b _ a) if and only if A satisfies schema
d ⊓ ((a ⊓ b) _ (a ⊓ x)) = d ⊓ (b _ x)

14. a ⊓ b _ c = ε implies b _ a ✂ b _ c, so also
a ⊓ b ✂ c implies b _ a ✂ b _ c

15. ∇n(a ⊓ b) = ∇na ⊓∇nb, for all n

16. a ✂ b _ c implies a ⊓ (d _ b) ✂ d _ c, in particular
a ✂ b _ c implies a ⊓∇b ✂ ∇c

17. b _ ε = ε implies ∇a⊓ ((a⊓ b) _ (a⊓ c)) = ∇a⊓ (b _ c)

18. A satisfies schema a⊓ ε ✂ z _ a if and only if A satisfies
schema a ⊓ ((a ⊓ x) _ (a ⊓ y)) = a ⊓ (x _ y)

19. b _ ε = ε plus a ⊓ b ✂ c implies ∇a ✂ b _ c

Proposition 0.2. Let t(x) be a term over a latarre A. If x is
only positive in t(x), then x ✂ y implies t(x) ✂ t(y). If x is
only negative in t(x), then x ✂ y implies t(y) ✂ t(x).
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We do not always have that x positive in t(x) implies x _

y ✂ t(x) _ t(y). For otherwise with t(x) = ∇x it would imply
x _ y ✂ (ε _ x) _ (ε _ y), so in particular ∇y ✂ ∇2y. Here
is a counterexample to this last equation. Consider the Boolean
lattice M.
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We can construct a (unique) unitary latarre on M with ε _

a = 1 _ a = b and 1 _ b = a. So ∇b = a and ∇2b = b.

Proposition 0.3. Let t(x) be a term over a latarre A and n ≥ 0
be such that x only occurs at depth n in t(x). If x is only positive
in t(x), then ∇n(x _ y) ✂ t(x) _ t(y). If x is only negative in
t(x), then ∇n(x _ y) ✂ t(y) _ t(x).

Proposition 0.4. Let t(x) be a term over a latarre A in which
x occurs only at depths at least n in t(x), for some n ≥ 1. Let
a, b ∈ A be such that ∇n−1(a _ b) = ε. If x is only positive
in t(x), then t(a) ✂ t(b). If x is only negative in t(x), then
t(b) ✂ t(a).
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Construct new latarres from old ones. Given a latarre A,
relation x ∼ y defined by x ] y = ε, is a congruence. Write
x′ for the equivalence class of x. A′ = (A′,⊓′,⊔′, ε′,_′) is a
latarre, and map x 7→ x′ is a latarre morphism from A onto A′.

Repeat this construction and form A′′ = A(2). Continuing
in this way, we get a chain

A = A(0) → A(1) → A(2) → A(3) → . . .

with for all a, b ∈ A and n ≥ 1 we have a(n) = b(n) in A(n)

exactly when ∇n−1(a ] b) = ε.

Semilatarres exist over language (⊓, ε,_). Drop the axioms
involving ⊔, but add

(x ⊓ y) _ (x ⊓ y) ✂ y _ y

Proposition 0.5. Let A be a semilatarre. Let D = D(A) be
the usual topological space of downward closed subsets. Define
_ by U _ V = {z ∈ A : z ✂ ε ∧ ∀x ∈ U ∃y ∈ V (z ✂ x _ y}.
Then D is a distributive latarre. The map δ(a) = 〈 a] is a
semilatarre embedding of A into D.

On latarre D(A) we can define the ‘usual’ Heyting arrow.

Proposition 0.6. Let t(x) be a term over a distributive latarre
A and n ≥ 1 be such that x only occurs at depth n in t(x). If
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x is only positive in t(x), then t(x)⊓∇n−1(x _ y) ✂ t(y). If x
is only negative in t(x), then t(y) ⊓∇n−1(x _ y) ✂ t(x).

Proposition 0.7. Let A be a latarre. Let I = I(A) be the
substructure of D(A) of ideals (only ⊔ changes). Then I is a
latarre with an algebraic complete lattice. The map δ(a) = 〈 a]
is a latarre embedding of A into I.

From here on essentially all (semi)latarres are unitary.

A CJ latarre is a unitary distributive latarre, where CJ
stands for Celani and Jansana.

AVisser latarre is a distributive latarre satisfying the schema
x ✂ ∇x of arrow persistence. Arrow persistence implies being
unitary, since ∇x ✂ ε for all x.

A Heyting latarre is a latarre satisfying the schema x = ∇x

of arrow balance. We show below that Heyting latarres are
distributive.

A Boolean latarre is a latarre satisfying the schema (x _

y) _ y = x ⊔ y. We show below that Boolean latarres are
Heyting.

Similar definitions for CJ semilatarres, Visser semilatarres,
Heyting semilatarres, and Boolean semilatarres.
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Proposition 0.8. The following are equivalent for a latarre.

1. The latarre is arrow persistent

2. (x ⊓ y _ z) = ε implies x ✂ y _ z, for all x, y, and z

3. x ⊓ y ✂ z implies x ✂ y _ z, for all x, y, and z

The following are equivalent for a latarre.

4. The latarre is arrow balanced (or: Heyting)

5. x ⊓ y ✂ z if and only if x ✂ y _ z, for all x, y, and z

The last schema implies distributivity, so all Heyting latarres
are distributive.

A latarre satisfying schema (x _ y) _ y = x ⊔ y (or:
Boolean) is arrow balanced (or: Heyting).

Proposition 0.9. The following are equivalent for a latarre A.

1. A is arrow balanced (or: Heyting).

2. A satisfies schema x ⊓ (x _ y) = x ⊓ y.

Proof. Suppose item 2. Setting x = y in the schema shows that
the latarre is unitary. So we write 1 for ε. Setting x = 1 in the
schema shows arrow balance.

8



Conversely, suppose item 1. Then A is unitary. So x ⊓ y =
x ⊓ (1 _ y) ✂ x ⊓ (x _ y), and by the previous Proposition,
x _ y ✂ x _ y implies x ⊓ (x _ y) ✂ x ⊓ y.

Proposition 0.10. Let a, b, and c be elements of a Heyting
semilatarre A, and let a and b have a least upper bound d. Then
(a _ c) ⊓ (b _ c) = d _ c.

Proof. The semilatarre satisfies schema

(a ✂ x) ∧ (b ✂ x) ↔ (d ✂ x),

and (d _ c) ✂ (a _ c) ⊓ (b _ c). Write e as short for (a _

c) ⊓ (b _ c). We have the following derivation.

e ✂ a _ c and e ✂ b _ c.
e ⊓ a ✂ c and e ⊓ b ✂ c.
a ✂ e _ c and b ✂ e _ c.
d ✂ e _ c.
d ⊓ e ✂ c.
e ✂ d _ c.

That is, (a _ c) ⊓ (b _ c) ✂ d _ c.

A Boolean semilatarre satisfies (x _ (x⊓ y)) _ (x⊓ y) = x.

Proposition 0.11. The following are equivalent for latarre A.
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1. A satisfies (x _ y) _ y = x ⊔ y (or: Boolean)

2. A satisfies (x _ (x ⊓ y)) _ (x ⊓ y) = x

3. A satisfies x ⊔ (x _ y) = ε and x ⊓ (x _ y) = x ⊓ y

Proof. The schema of item 1 turns into the schema of item 2
when we substitute x⊓y for y. The schema of item 2 turns into
the schema of item 1 when we substitute x ⊔ y for x. So items
1 and 2 are equivalent.

Finally, the equivalence with item 3. Set x = y in item
1 to get ∇y = y, so ε is top (we may write ε = 1). Next,
x⊓y = x⊓∇y ✂ x⊓(x _ y) = x⊓∇x⊓(x _ y) ✂ x⊓∇y = x⊓y.
Finally, x ⊔ (x _ y) = (x _ (x _ y)) _ (x _ y) = (x _

(x ⊓ (x _ y))) _ (x _ y) = (x _ (x ⊓ y)) _ (x _ y) = (x _

y) _ (x _ y) = ε.
Conversely, suppose item 3. The second schema implies that

A is a Heyting latarre. We establish item 2 as follows. (x _

(x ⊓ y)) _ (x ⊓ y) = (x _ y) _ (x ⊓ (x _ y)) = (x _ y) _

x = (x ⊔ (x _ y)) _ x = ∇x = x.

Proposition 0.12. Let A = (M,_) be a Boolean semilatarre.
Define

x ⊔∗ y = ((x _ (x ⊓ y)) ⊓ (y _ (x ⊓ y))) _ (x ⊓ y).
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Then A∗ = (M,⊔∗,_) is a Boolean latarre.

Proof. From the definitions we see that Boolean semilatarres
satisfy schema

x ☎ y → (x _ y) _ y = x.

Since (x _ (x ⊓ y)) ⊓ (y _ (x ⊓ y)) ✂ (x _ (x ⊓ y)), we have
x = (x _ (x⊓y)) _ (x⊓y) ✂ x⊔∗y. By symmetry we also have
y ✂ x ⊔∗ y. So x ⊔∗ y is an upper bound of x and y. Suppose
x ✂ z and y ✂ z. Then

z _ (x ⊓ y) ✂ x _ (x ⊓ y) and
z _ (x ⊓ y) ✂ y _ (x ⊓ y).

z _ (x ⊓ y) ✂ (x _ (x ⊓ y)) ⊓ (y _ (x ⊓ y)).
x ⊔∗ y ✂ (z _ (x ⊓ y)) _ (x ⊓ y) = z.

So x⊔∗ y is the least upper bound of x and y. Finally, Heyting
semilatarres have

(x ⊔∗ y) _ z = (x _ z) ⊓ (y _ z).

Thus A∗ is a Boolean latarre.

U is a complete ideal if U ⊆ A is a downward closed subset
such that for all subsets F ⊆ U , if

⊔
F exists, then

⊔
F ∈ U .
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Proposition 0.13. Let A be a Heyting semilatarre. Let H =
H(A) be the substructure of D(A) of complete ideals (only ⊔
changes). Then H is a Heyting latarre and a frame, with _

equal the standard arrow. Map δ(a) = 〈 a] is a semilatarre
embedding which preserves all colimits, so is a latarre embedding
if A is a Heyting latarre. If A is complete as lattice, then δ is
a latarre isomorphism.

Given a latarre A and element a, we construct a latarre Aa

on domain 〈 a] as follows. Set

εa = ε ⊓ a

x _a y = a ⊓ (x _ y)
x ⊓a y = x ⊓ y

x ⊔a y = x ⊔ y

Function πa(x) = a ⊓ x is an idempotent map from A onto Aa.
Define A admits meet substitution if for all terms t(x) and

a ∈ A we have A |= ∀xy(a ⊓ x = a ⊓ y → a ⊓ t(x) = a ⊓ t(y)).
This is equivalent to A |= ∀x(a ⊓ t(x) = a ⊓ t(a ⊓ x)), which is
a universal equation.

An element a of a latarre A is called weakly persistent over
A if A satisfies schema a ⊓ ε ✂ (x _ a). A latarre A is called
weakly Visser if it is distributive, and if it satisfies schema

x ⊓ ε ✂ y _ x
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Proposition 0.14. A latarre A is weakly Visser exactly when
A admits meet substitution.

So if a latarre is unitary, then it admits meet substitution
exactly when it is a Visser latarre.

Over Visser latarres we know that each term t(x) has ex-
plicit fixpoint t(1), that is, t(t(1)) = t(1), exactly when for all
elements a term ta(x) = x _ a has fixpoint ta(1), that is,
ta(ta(1)) = ta(1).

A term t(x) is called fixed over a (unitary) latarre A if A
satisfies schema t(t(x) ⊓ x) = t(x). An element a is called Löb
over if A satisfies schema ta(ta(x)⊓x) = ta(x). A latarre is fixed
if all its terms are fixed. A latarre is Löb if all its elements are
Löb. Obviously fixed implies Löb.

Proposition 0.15. Let t(x) be a term over a Visser latarre A.
Then t(x) is fixed over A if and only if t(x) has explicit fixpoint
t(1). So element a is Löb if and only if ta(ta(1)) = ta(1).

Proposition 0.16. The following are equivalent for a (unitary)
latarre A.

1. A has explicit fixpoints

2. A is a weakly Visser and ta(ta(1)) = ta(1) for all a

3. A is a weakly Visser and Löb
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4. A is fixed
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