What makes some latarres so special?
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Latarres are essentially defined as LATtices with an ARRow.
Language (M,U,—). A lattice with respect to M and U. Arrow
properties:

r—y=(@Uy) =y
z—+y=x—(zMy)

y dzimpliesx -y Jzx — 2
y 1z implies z o Jy —«x
(x—=y)N(y—2)daz—z

where < is the definable order.
Axiomatize with equations. Language (I, LU, &, —), with ‘tech-
nical’ €. Universal algebra axioms are lattice axioms plus:

NlL. z »y=(xUy) —y
N2. z —»y=ao— (xMy)
N3. z = (zMyMNz)<x — (zMNy)

Nd. y — (yMz) J(zMNy) — (xMyMz)



N5. (x = (xMy)) N ((xNy) = (xMyMz)) <z — (zMNyllz)
N6. e we=c¢

A latarre if unitary if the lattice has a top 1 and € = 1.

As example, define a unitary latarre on lattice N5 as follows.
In the diagram, labels x, y, and z mean that we set 1 — b =y,
set b — a = z, and so on. The letters x, y and z are values
to be chosen freely from among the set of elements {0, a, b, p, 1}
with the only restrictions that x < z and y < z.
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We inductively define V%2 = x and V*Tlx = ¢ — V"z. An
x occurs at depth n > 0 in term t(z) if x occurs n levels deep
inside implication subformulas of implication subformulas and
so on (so x occurs at depth n in V"z). An x occurs informally



if depth n = 0, otherwise x occurs formally. Obviously informal
occurrences are always positive.

Proposition 0.1. Let a, b, ¢, and d be elements of a latarre
2A. Then
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a— (bMc)=(a—0b)M(a—c)

(bUc) >a=(b—a)M(c—a)
(a—=b)Mb-—-c)=(allb) — (bMc)
(alUb) > c>bimplies (alUUb) - c=a— (allc) =a —c
al>c>allb impliesc— (alMb) = (cUb) -b=c—b
a—b<e

a—a=¢

a <1bimpliesa —b=c¢

a—b=c impliesc—>a<c—>bandb—c<a—c

Suppose ¢ — a < (a —> b) M (b —> c), Then (c —> a) —
(c = b) (b — a). In particular, if ¢ > b > a, then
(c—a)=(c—b)MN(b—a)



11.
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13.

14.

15.
16.

17.
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19.

b—c<(alb)— (alc)
(b—a)M((alb) — (aMc))=(b—>a)M(b— c)

dfe =dn (b — a) if and only if A satisfies schema
dr((amb) — (aMx))=dM (b — x)

allb—c=c¢c impliesb—a Ib—c, so also
allb<c impliesb—a<b—c

V*"(amb)=V"a1V", foralln

a b— cimpliesam (d—b) Id—c, in particular
a <1b—cimplies al1Vb < Ve

b— e =c¢c implies Val((aMb) — (alc)) = Vall(b— c)

2 satisfies schema aTle < z — a if and only if A satisfies
schema aM ((aMz) — (aMy)) =al (x — y)

b—c=c¢ plusalb<dcimplies Va <1b—c

Proposition 0.2. Let t(x) be a term over a latarre . If x is
only positive in t(x), then x < y implies t(x) < t(y). If x is
only negative in t(x), then x <y implies t(y) < t(x).



We do not always have that x positive in t(z) implies x —
y < t(x) — t(y). For otherwise with t(z) = Vz it would imply
r—y < (e —x)— (¢ = y), so in particular Vy < V2y. Here
is a counterexample to this last equation. Consider the Boolean
lattice M.
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We can construct a (unique) unitary latarre on 91 with ¢ —

a=1—-a=band1—-b=a. So Vb=a and V?b =b.

Proposition 0.3. Lett(x) be a term over a latarre A andn > 0
be such that x only occurs at depth n int(x). If x is only positive
in t(x), then V" (x — y) < t(x) — t(y). If x is only negative in
t(x), then V™ (x — y) Jt(y) — t(x).

Proposition 0.4. Let t(x) be a term over a latarre A in which
x occurs only at depths at least n in t(x), for some n > 1. Let
a,b € A be such that V" 1(a — b) = . If x is only positive
in t(x), then t(a) < t(b). If x is only negative in t(x), then
t(b) < t(a).



Construct new latarres from old ones. Given a latarre 2,
relation z ~ y defined by x <>y = ¢, is a congruence. Write
x’ for the equivalence class of z. A = (A", 1,/ &', —') is a
latarre, and map x — 2’ is a latarre morphism from 2 onto 2.

Repeat this construction and form 27 = A). Continuing
in this way, we get a chain

A=A 5 A1) 5 A2 5 B 5

with for all a,b € A and n > 1 we have a(™ = b in A
exactly when V"~ 1(a <+ b) = e.

Semilatarres exist over language (I, e, —). Drop the axioms
involving LI, but add

(zMy) = (xNy) dy —y

Proposition 0.5. Let 21 be a semilatarre. Let ® = D(2A) be
the usual topological space of downward closed subsets. Define
—byU -V ={z2€eA: z2deANVeeUFyeV(zdz—y}.
Then ® is a distributive latarre. The map 6(a) = (a] is a
semilatarre embedding of A into D).

On latarre ©(2) we can define the ‘usual’ Heyting arrow.

Proposition 0.6. Let t(x) be a term over a distributive latarre
A and n > 1 be such that x only occurs at depth n in t(x). If



x is only positive in t(x), then t(x) IV Yz —y) < t(y). Ifx
is only negative in t(x), then t(y) MV Yz — y) < t(x).

Proposition 0.7. Let 2 be a latarre. Let J = J(A) be the
substructure of ®(U) of ideals (only L changes). Then J is a
latarre with an algebraic complete lattice. The map d(a) = (al
s a latarre embedding of A into J.

From here on essentially all (semi)latarres are unitary.

A CJ latarre is a unitary distributive latarre, where CJ
stands for Celani and Jansana.

A Visser latarre is a distributive latarre satisfying the schema
x < Vzx of arrow persistence. Arrow persistence implies being
unitary, since Va < ¢ for all x.

A Heyting latarre is a latarre satisfying the schema z = Vx
of arrow balance. We show below that Heyting latarres are
distributive.

A Boolean latarre is a latarre satisfying the schema (x —
y) — y = x Uy. We show below that Boolean latarres are
Heyting.

Similar definitions for CJ semilatarres, Visser semilatarres,
Heyting semilatarres, and Boolean semilatarres.



Proposition 0.8. The following are equivalent for a latarre.

1. The latarre is arrow persistent
2. (xMy — z) =€ implies x 1y — z, for all x, y, and z
3. xMy <z impliesx Iy — z, forall z, y, and z

The following are equivalent for a latarre.
4. The latarre is arrow balanced (or: Heyting)
5. x Ty <z if and only if x ]y — z, for all x, y, and z

The last schema 1mplies distributivity, so all Heyting latarres

are distributive.
A latarre satisfying schema (x — y) — y = z Uy (or:

Boolean) is arrow balanced (or: Heyting).

Proposition 0.9. The following are equivalent for a latarre 2.
1. A is arrow balanced  (or: Heyting).

2. A satisfies schema x M (x — y) =z My.

Proof. Suppose item 2. Setting x = y in the schema shows that
the latarre is unitary. So we write 1 for €. Setting x = 1 in the

schema shows arrow balance.



Conversely, suppose item 1. Then 2l is unitary. So x My =
zM (1l - y) JzM(x — y), and by the previous Proposition,
r—y Jdx—yimplies xM(x —y) JxMy. []

Proposition 0.10. Let a, b, and c be elements of a Heyting
semilatarre 2, and let a and b have a least upper bound d. Then
(a—=c)M(b—c)=d—c.

Proof. The semilatarre satisfies schema
(adz)N(b<Lzx) < (dDx),

and (d — ¢) < (a — ¢) M (b — ¢). Write e as short for (a —
c) M (b — ¢). We have the following derivation.

e<la—-cande<b— c.
ela<candellb <ec.
ale—->cand ble— c.
d e — c.

dMe <ec.

e ld— c.

That is, (a - )M (b —c¢) < d — c. []
A Boolean semilatarre satisfies (x — (xMy)) — (xMy) = x.

Proposition 0.11. The following are equivalent for latarre 2.



1. A satisfies (x - y) —>y=x Uy (or: Boolean)
2. A satisfies (x — (xMNy)) = (xNy) ==
3. A satisfiesx U (x > y) =c andx M (x - y)=xy

Proof. The schema of item 1 turns into the schema of item 2
when we substitute My for y. The schema of item 2 turns into
the schema of item 1 when we substitute z Ll y for z. So items
1 and 2 are equivalent.

Finally, the equivalence with item 3. Set x = y in item
1 to get Vy = y, so € is top (we may write ¢ = 1). Next,
My = xNVy < axM(z — y) = zNVzl(x — y) < xMVy = zMy.
Finally, 2 U (2 = y) = (¢ = (z = y)) = (¢ = y) = (¢ —
Nz —y) »(@—>y =@—>(Ny) =@y =@
y) = (z —»y) =e.

Conversely, suppose item 3. The second schema implies that
2 is a Heyting latarre. We establish item 2 as follows. (x —
(@My) = @Ny)=(z—y) = @@ —>y)=(@—>y —
r=(xU(x—>y) »2x=Vr=ur. ]

Proposition 0.12. Let A = (M, —) be a Boolean semilatarre.
Define

sy =((z— (zNy)) Ny — (zMy))) — (zMy).
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Then A* = (M, U*, —) is a Boolean latarre.

Proof. From the definitions we see that Boolean semilatarres
satisfy schema

rby = (r—y —y=u

Since (z — (xMy))MN(y — (zMy)) I (x — (zMy)), we have
r = (x — (zMy)) = (xMNy) < z*y. By symmetry we also have
y ]z U y. So x U* y is an upper bound of x and y. Suppose
x <z and y < z. Then

z— (xMNy) dz— (xMy) and

z— (zNy) Jy — (zNy).
z— (zMNy) d(z— (zMy))N(y — (zNy)).
sy d(z— (zMNy)) = (xNy) = 2.

So x LI* y is the least upper bound of x and y. Finally, Heyting
semilatarres have

(2" y) = z=(z—2)N(y — 2).
Thus A* is a Boolean latarre. L]

U is a complete ideal if U C A is a downward closed subset
such that for all subsets F' C U, if | | F' exists, then | | € U.
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Proposition 0.13. Let 2 be a Heyting semilatarre. Let $ =
H(RA) be the substructure of D(A) of complete ideals (only LI
changes). Then $ is a Heyting latarre and a frame, with —
equal the standard arrow. Map §(a) = (a] is a semilatarre
embedding which preserves all colimits, so is a latarre embedding
of A is a Heyting latarre. If 2 is complete as lattice, then ¢ 1s
a latarre isomorphism.

Given a latarre 2 and element a, we construct a latarre 2,
on domain (a| as follows. Set

Eqo =€lla
r—,y=all(x—y)
Tllgy=xlly
rlUlgy=ax Uy

Function m,(x) = aMx is an idempotent map from 2A onto 2A,,.

Define 2 admits meet substitution if for all terms ¢(x) and
a € Awehave A =EVry(aNax =aNy — allt(zx) =alt(y)).
This is equivalent to A = Vx(aMt(z) = aMt(aMx)), which is
a universal equation.

An element a of a latarre 2 is called weakly persistent over
2 if A satisfies schema aMe < (x — a). A latarre 2 is called
weakly Visser if it is distributive, and if it satisfies schema

rlle dy—zx
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Proposition 0.14. A latarre A is weakly Visser exactly when
2 admits meet substitution.

So if a latarre s unitary, then it admits meet substitution
exactly when it is a Visser latarre.

Over Visser latarres we know that each term t(x) has ex-
plicit fizrpoint t(1), that is, t(¢(1)) = t(1), exactly when for all
elements a term t,(xr) = x — a has fixpoint t,(1), that is,
ta(ta(1)> — ta(l)'

A term t(x) is called fized over a (unitary) latarre 2 if A
satisfies schema t(t(x) Mx) = t(x). An element a is called Ldb
over if 2 satisfies schema t,(t,(z)Nx) = t,(x). A latarre is fized
if all its terms are fixed. A latarre is Lob if all its elements are
Lob. Obviously fixed implies Lob.

Proposition 0.15. Let t(x) be a term over a Visser latarre 2.
Then t(z) is fixed over A if and only if t(x) has explicit fixpoint
t(1). So element a is Lob if and only if t,(t.(1)) = t.(1).

Proposition 0.16. The following are equivalent for a (unitary)
latarre .

1. A has explicit fixpoints
2. A is a weakly Visser and t,(t,(1)) = t4(1) for all a

3. A 1s a weakly Visser and Lob
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4. R is fixed
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