What makes some latarres so special?

Mohammad Ardeshir Wim Ruitenburg

Latarres are essentially defined as LATtices with an ARRow. Language $(\Box, \sqcup, \rightarrow)$. A lattice with respect to \Box and \sqcup . Arrow properties:

 $\begin{aligned} x &\to y = (x \sqcup y) \to y \\ x \to y = x \to (x \sqcap y) \\ y &\leq z \text{ implies } x \to y \leq x \to z \\ y &\leq z \text{ implies } z \to x \leq y \to x \\ (x \to y) \sqcap (y \to z) \leq x \to z \end{aligned}$

where \leq is the definable order.

Axiomatize with equations. Language $(\Box, \sqcup, \varepsilon, \rightarrow)$, with 'technical' ε . Universal algebra axioms are lattice axioms plus:

N1. $x \rightarrow y = (x \sqcup y) \rightarrow y$ N2. $x \rightarrow y = x \rightarrow (x \sqcap y)$ N3. $x \rightarrow (x \sqcap y \sqcap z) \leq x \rightarrow (x \sqcap y)$ N4. $y \rightarrow (y \sqcap z) \leq (x \sqcap y) \rightarrow (x \sqcap y \sqcap z)$ N5. $(x \rightarrow (x \sqcap y)) \sqcap ((x \sqcap y) \rightarrow (x \sqcap y \sqcap z)) \trianglelefteq x \rightarrow (x \sqcap y \sqcap z)$ N6. $\varepsilon \rightarrow \varepsilon = \varepsilon$

A latarre if *unitary* if the lattice has a top 1 and $\varepsilon = 1$.

As example, define a unitary latarre on lattice N_5 as follows. In the diagram, labels x, y, and z mean that we set $1 \rightarrow b = y$, set $b \rightarrow a = z$, and so on. The letters x, y and z are values to be chosen freely from among the set of elements $\{0, a, b, p, 1\}$ with the only restrictions that $x \leq z$ and $y \leq z$.

We inductively define $\nabla^0 x = x$ and $\nabla^{n+1} x = \varepsilon \to \nabla^n x$. An x occurs at depth $n \ge 0$ in term t(x) if x occurs n levels deep inside implication subformulas of implication subformulas and so on (so x occurs at depth n in $\nabla^n x$). An x occurs informally

if depth n = 0, otherwise x occurs formally. Obviously informal occurrences are always positive.

Proposition 0.1. Let a, b, c, and d be elements of a latarre \mathfrak{A} . Then

1.
$$a \rightarrow (b \sqcap c) = (a \rightarrow b) \sqcap (a \rightarrow c)$$

2. $(b \sqcup c) \rightarrow a = (b \rightarrow a) \sqcap (c \rightarrow a)$
3. $(a \rightarrow b) \sqcap (b \rightarrow c) = (a \sqcup b) \rightarrow (b \sqcap c)$
4. $(a \sqcup b) \supseteq c \supseteq b$ implies $(a \sqcup b) \rightarrow c = a \rightarrow (a \sqcap c) = a \rightarrow c$
5. $a \supseteq c \supseteq a \sqcap b$ implies $c \rightarrow (a \sqcap b) = (c \sqcup b) \rightarrow b = c \rightarrow b$
6. $a \rightarrow b \trianglelefteq c$
7. $a \rightarrow a = c$
8. $a \trianglelefteq b$ implies $a \rightarrow b = c$
9. $a \rightarrow b = c$ implies $c \rightarrow a \trianglelefteq c \rightarrow b$ and $b \rightarrow c \trianglelefteq a \rightarrow c$
10. Suppose $c \rightarrow a \trianglelefteq (a \rightarrow b) \sqcap (b \rightarrow c)$. Then $(c \rightarrow a) = (c \rightarrow b) \sqcap (b \rightarrow a)$. In particular, if $c \supseteq b \supseteq a$, then $(c \rightarrow a) = (c \rightarrow b) \sqcap (b \rightarrow a)$

11.
$$b \rightarrow c \leq (a \sqcap b) \rightarrow (a \sqcap c)$$

12. $(b \rightarrow a) \sqcap ((a \sqcap b) \rightarrow (a \sqcap c)) = (b \rightarrow a) \sqcap (b \rightarrow c)$

- 13. $d \sqcap \varepsilon = d \sqcap (b \twoheadrightarrow a)$ if and only if \mathfrak{A} satisfies schema $d \sqcap ((a \sqcap b) \twoheadrightarrow (a \sqcap x)) = d \sqcap (b \twoheadrightarrow x)$
- 14. $a \sqcap b \twoheadrightarrow c = \varepsilon$ implies $b \twoheadrightarrow a \leq b \twoheadrightarrow c$, so also $a \sqcap b \leq c$ implies $b \twoheadrightarrow a \leq b \twoheadrightarrow c$
- 15. $\nabla^n(a \sqcap b) = \nabla^n a \sqcap \nabla^n b$, for all n
- 16. $a \leq b \Rightarrow c$ implies $a \sqcap (d \Rightarrow b) \leq d \Rightarrow c$, in particular $a \leq b \Rightarrow c$ implies $a \sqcap \nabla b \leq \nabla c$
- 17. $b \rightarrow \varepsilon = \varepsilon$ implies $\nabla a \sqcap ((a \sqcap b) \rightarrow (a \sqcap c)) = \nabla a \sqcap (b \rightarrow c)$
- 18. A satisfies schema $a \sqcap \varepsilon \trianglelefteq z \twoheadrightarrow a$ if and only if A satisfies schema $a \sqcap ((a \sqcap x) \twoheadrightarrow (a \sqcap y)) = a \sqcap (x \twoheadrightarrow y)$
- 19. $b \rightarrow \varepsilon = \varepsilon$ plus $a \sqcap b \leq c$ implies $\nabla a \leq b \rightarrow c$

Proposition 0.2. Let t(x) be a term over a latarre \mathfrak{A} . If x is only positive in t(x), then $x \leq y$ implies $t(x) \leq t(y)$. If x is only negative in t(x), then $x \leq y$ implies $t(y) \leq t(x)$.

We do not always have that x positive in t(x) implies $x \to y \leq t(x) \to t(y)$. For otherwise with $t(x) = \nabla x$ it would imply $x \to y \leq (\varepsilon \to x) \to (\varepsilon \to y)$, so in particular $\nabla y \leq \nabla^2 y$. Here is a counterexample to this last equation. Consider the Boolean lattice \mathfrak{M} .

We can construct a (unique) unitary latarre on \mathfrak{M} with $\varepsilon \rightarrow a = 1 \rightarrow a = b$ and $1 \rightarrow b = a$. So $\nabla b = a$ and $\nabla^2 b = b$.

Proposition 0.3. Let t(x) be a term over a latarre \mathfrak{A} and $n \geq 0$ be such that x only occurs at depth n in t(x). If x is only positive in t(x), then $\nabla^n(x \rightarrow y) \leq t(x) \rightarrow t(y)$. If x is only negative in t(x), then $\nabla^n(x \rightarrow y) \leq t(y) \rightarrow t(x)$.

Proposition 0.4. Let t(x) be a term over a latarre \mathfrak{A} in which x occurs only at depths at least n in t(x), for some $n \ge 1$. Let $a, b \in A$ be such that $\nabla^{n-1}(a \rightarrow b) = \varepsilon$. If x is only positive in t(x), then $t(a) \le t(b)$. If x is only negative in t(x), then $t(b) \le t(a)$.

Construct new latarres from old ones. Given a latarre \mathfrak{A} , relation $x \sim y$ defined by $x \nleftrightarrow y = \varepsilon$, is a congruence. Write x' for the equivalence class of x. $\mathfrak{A}' = (A', \Box', \sqcup', \varepsilon', \twoheadrightarrow')$ is a latarre, and map $x \mapsto x'$ is a latarre morphism from \mathfrak{A} onto \mathfrak{A}' .

Repeat this construction and form $\mathfrak{A}'' = \mathfrak{A}^{(2)}$. Continuing in this way, we get a chain

$$\mathfrak{A} = \mathfrak{A}^{(0)} \to \mathfrak{A}^{(1)} \to \mathfrak{A}^{(2)} \to \mathfrak{A}^{(3)} \to \dots$$

with for all $a, b \in A$ and $n \ge 1$ we have $a^{(n)} = b^{(n)}$ in $\mathfrak{A}^{(n)}$ exactly when $\nabla^{n-1}(a \nleftrightarrow b) = \varepsilon$.

Semilatarres exist over language $(\Box, \varepsilon, \rightarrow)$. Drop the axioms involving \sqcup , but add

 $(x\sqcap y) \twoheadrightarrow (x\sqcap y) \trianglelefteq y \twoheadrightarrow y$

Proposition 0.5. Let \mathfrak{A} be a semilatarre. Let $\mathfrak{D} = \mathfrak{D}(\mathfrak{A})$ be the usual topological space of downward closed subsets. Define \rightarrow by $U \rightarrow V = \{z \in A : z \leq \varepsilon \land \forall x \in U \exists y \in V (z \leq x \rightarrow y)\}$. Then \mathfrak{D} is a distributive latarre. The map $\delta(a) = \langle a]$ is a semilatarre embedding of \mathfrak{A} into \mathfrak{D} .

On latarre $\mathfrak{D}(\mathfrak{A})$ we can define the 'usual' Heyting arrow.

Proposition 0.6. Let t(x) be a term over a distributive latarre \mathfrak{A} and $n \geq 1$ be such that x only occurs at depth n in t(x). If

x is only positive in t(x), then $t(x) \sqcap \nabla^{n-1}(x \twoheadrightarrow y) \leq t(y)$. If x is only negative in t(x), then $t(y) \sqcap \nabla^{n-1}(x \twoheadrightarrow y) \leq t(x)$.

Proposition 0.7. Let \mathfrak{A} be a latarre. Let $\mathfrak{I} = \mathfrak{I}(\mathfrak{A})$ be the substructure of $\mathfrak{D}(\mathfrak{A})$ of ideals (only \sqcup changes). Then \mathfrak{I} is a latarre with an algebraic complete lattice. The map $\delta(a) = \langle a]$ is a latarre embedding of \mathfrak{A} into \mathfrak{I} .

From here on essentially all (semi)latarres are unitary.

A *CJ latarre* is a unitary distributive latarre, where CJ stands for Celani and Jansana.

A Visser latarre is a distributive latarre satisfying the schema $x \leq \nabla x$ of arrow persistence. Arrow persistence implies being unitary, since $\nabla x \leq \varepsilon$ for all x.

A Heyting latarre is a latarre satisfying the schema $x = \nabla x$ of arrow balance. We show below that Heyting latarres are distributive.

A Boolean latarre is a latarre satisfying the schema $(x \rightarrow y) \rightarrow y = x \sqcup y$. We show below that Boolean latarres are Heyting.

Similar definitions for CJ semilatarres, Visser semilatarres, Heyting semilatarres, and Boolean semilatarres.

Proposition 0.8. The following are equivalent for a latarre.

1. The latarre is arrow persistent

2. $(x \sqcap y \twoheadrightarrow z) = \varepsilon$ implies $x \leq y \twoheadrightarrow z$, for all x, y, and z

3. $x \sqcap y \leq z$ implies $x \leq y \Rightarrow z$, for all x, y, and z

The following are equivalent for a latarre.

4. The latarre is arrow balanced (or: Heyting)

5. $x \sqcap y \leq z$ if and only if $x \leq y \Rightarrow z$, for all x, y, and z

The last schema implies distributivity, so all Heyting latarres are distributive.

A latarre satisfying schema $(x \rightarrow y) \rightarrow y = x \sqcup y$ (or: Boolean) is arrow balanced (or: Heyting).

Proposition 0.9. The following are equivalent for a later \mathfrak{A} .

1. \mathfrak{A} is arrow balanced (or: Heyting).

2. A satisfies schema $x \sqcap (x \twoheadrightarrow y) = x \sqcap y$.

Proof. Suppose item 2. Setting x = y in the schema shows that the latarre is unitary. So we write 1 for ε . Setting x = 1 in the schema shows arrow balance.

Conversely, suppose item 1. Then \mathfrak{A} is unitary. So $x \sqcap y = x \sqcap (1 \twoheadrightarrow y) \trianglelefteq x \sqcap (x \twoheadrightarrow y)$, and by the previous Proposition, $x \twoheadrightarrow y \trianglelefteq x \twoheadrightarrow y$ implies $x \sqcap (x \twoheadrightarrow y) \trianglelefteq x \sqcap y$.

Proposition 0.10. Let a, b, and c be elements of a Heyting semilatarre \mathfrak{A} , and let a and b have a least upper bound d. Then $(a \rightarrow c) \sqcap (b \rightarrow c) = d \rightarrow c$.

Proof. The semilatarre satisfies schema

 $(a \trianglelefteq x) \land (b \trianglelefteq x) \leftrightarrow (d \trianglelefteq x),$

and $(d \rightarrow c) \leq (a \rightarrow c) \sqcap (b \rightarrow c)$. Write *e* as short for $(a \rightarrow c) \sqcap (b \rightarrow c)$. We have the following derivation.

 $e \trianglelefteq a \twoheadrightarrow c \text{ and } e \trianglelefteq b \twoheadrightarrow c.$ $e \sqcap a \trianglelefteq c \text{ and } e \sqcap b \trianglelefteq c.$ $a \trianglelefteq e \twoheadrightarrow c \text{ and } b \trianglelefteq e \twoheadrightarrow c.$ $d \trianglelefteq e \twoheadrightarrow c.$ $d \sqcap e \trianglelefteq c.$ $e \trianglelefteq d \twoheadrightarrow c.$

That is, $(a \rightarrow c) \sqcap (b \rightarrow c) \leq d \rightarrow c$.

A Boolean semilatarre satisfies $(x \rightarrow (x \sqcap y)) \rightarrow (x \sqcap y) = x$. **Proposition 0.11.** The following are equivalent for latarre \mathfrak{A} .

1. A satisfies $(x \rightarrow y) \rightarrow y = x \sqcup y$ (or: Boolean)

2. A satisfies
$$(x \rightarrow (x \sqcap y)) \rightarrow (x \sqcap y) = x$$

3. A satisfies
$$x \sqcup (x \twoheadrightarrow y) = \varepsilon$$
 and $x \sqcap (x \twoheadrightarrow y) = x \sqcap y$

Proof. The schema of item 1 turns into the schema of item 2 when we substitute $x \sqcap y$ for y. The schema of item 2 turns into the schema of item 1 when we substitute $x \sqcup y$ for x. So items 1 and 2 are equivalent.

Finally, the equivalence with item 3. Set x = y in item 1 to get $\nabla y = y$, so ε is top (we may write $\varepsilon = 1$). Next, $x \sqcap y = x \sqcap \nabla y \trianglelefteq x \sqcap (x \twoheadrightarrow y) = x \sqcap \nabla x \sqcap (x \multimap y) \trianglelefteq x \sqcap \nabla y = x \sqcap y$. Finally, $x \sqcup (x \multimap y) = (x \multimap (x \multimap y)) \multimap (x \multimap y) = (x \multimap (x \sqcap (x \multimap y))) \multimap (x \multimap y) = (x \multimap (x \sqcap y)) \multimap (x \multimap y) = (x \multimap (x \sqcap y)) \multimap (x \multimap y) = (x \multimap (x \multimap y)) \multimap (x \multimap y) = \varepsilon$.

Conversely, suppose item 3. The second schema implies that \mathfrak{A} is a Heyting latarre. We establish item 2 as follows. $(x \rightarrow (x \sqcap y)) \rightarrow (x \sqcap y) = (x \rightarrow y) \rightarrow (x \sqcap (x \rightarrow y)) = (x \rightarrow y) \rightarrow (x \sqcap (x \rightarrow y)) \rightarrow (x = (x \sqcup (x \rightarrow y)) \rightarrow x = \nabla x = x.$

Proposition 0.12. Let $\mathfrak{A} = (\mathfrak{M}, \rightarrow)$ be a Boolean semilatarre. Define

$$x \sqcup^* y = ((x \multimap (x \sqcap y)) \sqcap (y \multimap (x \sqcap y))) \multimap (x \sqcap y).$$

Then $\mathfrak{A}^* = (\mathfrak{M}, \sqcup^*, \twoheadrightarrow)$ is a Boolean latarre.

Proof. From the definitions we see that Boolean semilatarres satisfy schema

$$x \succeq y \rightarrow (x \multimap y) \multimap y = x.$$

Since $(x \to (x \sqcap y)) \sqcap (y \to (x \sqcap y)) \trianglelefteq (x \to (x \sqcap y))$, we have $x = (x \to (x \sqcap y)) \to (x \sqcap y) \trianglelefteq x \sqcup^* y$. By symmetry we also have $y \trianglelefteq x \sqcup^* y$. So $x \sqcup^* y$ is an upper bound of x and y. Suppose $x \trianglelefteq z$ and $y \trianglelefteq z$. Then

$$z \to (x \sqcap y) \trianglelefteq x \to (x \sqcap y) \text{ and}$$

$$z \to (x \sqcap y) \trianglelefteq y \to (x \sqcap y).$$

$$z \to (x \sqcap y) \trianglelefteq (x \to (x \sqcap y)) \sqcap (y \to (x \sqcap y)).$$

$$x \sqcup^* y \trianglelefteq (z \to (x \sqcap y)) \to (x \sqcap y) = z.$$

So $x \sqcup^* y$ is the least upper bound of x and y. Finally, Heyting semilatarres have

$$(x \sqcup^* y) \twoheadrightarrow z = (x \twoheadrightarrow z) \sqcap (y \twoheadrightarrow z).$$

Thus \mathfrak{A}^* is a Boolean latarre.

U is a complete ideal if $U \subseteq A$ is a downward closed subset such that for all subsets $F \subseteq U$, if $\bigsqcup F$ exists, then $\bigsqcup F \in U$.

Proposition 0.13. Let \mathfrak{A} be a Heyting semilatarre. Let $\mathfrak{H} = \mathfrak{H}(\mathfrak{A})$ be the substructure of $\mathfrak{D}(\mathfrak{A})$ of complete ideals (only \sqcup changes). Then \mathfrak{H} is a Heyting latarre and a frame, with \rightarrow equal the standard arrow. Map $\delta(a) = \langle a]$ is a semilatarre embedding which preserves all colimits, so is a latarre embedding if \mathfrak{A} is a Heyting latarre. If \mathfrak{A} is complete as lattice, then δ is a latarre isomorphism.

Given a latarre \mathfrak{A} and element a, we construct a latarre \mathfrak{A}_a on domain $\langle a]$ as follows. Set

$$\varepsilon_{a} = \varepsilon \sqcap a$$

$$x \rightarrow_{a} y = a \sqcap (x \rightarrow y)$$

$$x \sqcap_{a} y = x \sqcap y$$

$$x \sqcup_{a} y = x \sqcup y$$

Function $\pi_a(x) = a \sqcap x$ is an idempotent map from \mathfrak{A} onto \mathfrak{A}_a .

Define \mathfrak{A} admits meet substitution if for all terms t(x) and $a \in A$ we have $\mathfrak{A} \models \forall xy(a \sqcap x = a \sqcap y \to a \sqcap t(x) = a \sqcap t(y))$. This is equivalent to $\mathfrak{A} \models \forall x(a \sqcap t(x) = a \sqcap t(a \sqcap x))$, which is a universal equation.

An element a of a latarre \mathfrak{A} is called *weakly persistent* over \mathfrak{A} if \mathfrak{A} satisfies schema $a \sqcap \varepsilon \trianglelefteq (x \twoheadrightarrow a)$. A latarre \mathfrak{A} is called *weakly Visser* if it is distributive, and if it satisfies schema

 $x \sqcap \varepsilon \ \trianglelefteq \ y \twoheadrightarrow x$

Proposition 0.14. A latarre \mathfrak{A} is weakly Visser exactly when \mathfrak{A} admits meet substitution.

So if a latarre is unitary, then it admits meet substitution exactly when it is a Visser latarre.

Over Visser latarres we know that each term t(x) has *explicit fixpoint* t(1), that is, t(t(1)) = t(1), exactly when for all elements a term $t_a(x) = x \rightarrow a$ has fixpoint $t_a(1)$, that is, $t_a(t_a(1)) = t_a(1)$.

A term t(x) is called *fixed* over a (unitary) latarre \mathfrak{A} if \mathfrak{A} satisfies schema $t(t(x) \sqcap x) = t(x)$. An element *a* is called $L\ddot{o}b$ over if \mathfrak{A} satisfies schema $t_a(t_a(x) \sqcap x) = t_a(x)$. A latarre is *fixed* if all its terms are fixed. A latarre is $L\ddot{o}b$ if all its elements are Löb. Obviously fixed implies Löb.

Proposition 0.15. Let t(x) be a term over a Visser latarre \mathfrak{A} . Then t(x) is fixed over \mathfrak{A} if and only if t(x) has explicit fixpoint t(1). So element a is Löb if and only if $t_a(t_a(1)) = t_a(1)$.

Proposition 0.16. The following are equivalent for a (unitary) latarre \mathfrak{A} .

- 1. \mathfrak{A} has explicit fixpoints
- 2. At is a weakly Visser and $t_a(t_a(1)) = t_a(1)$ for all a
- 3. A is a weakly Visser and Löb

4. \mathfrak{A} is fixed