
Latarres, Lattices with an Arrow

Mohammad Ardeshir
Department of Mathematics

Sharif University of Technology
P.O. Box 11365-9415

Tehran, Iran
e-mail: mardeshir@sharif.edu

Wim Ruitenburg
Department of Mathematics, Statistics and Computer Science

Marquette University
P.O. Box 1881

Milwaukee, WI 53201, USA
e-mail: wimr@mscs.mu.edu

Abstract

A latarre is a lattice with an arrow. Its axiomatization looks natural. Latarres

have a nontrivial theory which permits many constructions of latarres. Latarres

appear as an end result of a series of generalizations of better known structures.

These include Boolean algebras and Heyting algebras. Latarres need not have a

distributive lattice.

1 Introduction

We introduce latarres as a natural class of universal algebra structures of lattices with an
arrow. A reader may question our qualification of ‘natural’, maybe not so much because
our definitions are unnatural, but rather that there may be other notions of ‘lattice with
arrow’ which have a fair claim to be called natural. Regardless, we hope that the context
of this paper is sufficient to convince that our qualification can be justified.

Latarres are the end result of a series of generalizations. Our process follows from
earlier mathematical results obtained about Boolean algebras, Heyting algebras, Visser
algebras (see [2], [3], and [8]), and what we call CJ algebras, after Celani and Jansana
(weakly Heyting algebras in [5]). With this paper we have no pretense to offer a complete
compilation of these results. Rather, we present a sufficiently extensive theory about
latarres to show that they are a good class to consider. Much in this paper consists of
modest generalizations of well-known material.

2 What is a Latarre?

A latarre is a LATtice with an ARRow. Before giving our formal definitions, let us
look at the essentials of its language, and the essential ‘natural’ defining properties.
The essential parts of its language consist of three binary operators (⊓,⊔,_). With
restriction to (⊓,⊔) a latarre is a lattice with meet ⊓ and join ⊔. For the arrow we have
the additional schemas

x _ y = (x ⊔ y) _ y.
x _ y = x _ (x ⊓ y).
y ✂ z implies x _ y ✂ x _ z.
y ✂ z implies z _ x ✂ y _ x.
(x _ y) ⊓ (y _ z) ✂ x _ z.

where ✂ is the usual order definable by x ✂ y exactly when x ⊓ y = x. None of these
schemas is original; even the collection as a whole we expect is known, at least in the
special case of distributive lattices.

1



Latarres form a universal algebra class. Below is an axiomatization by a collection
of universal equations. For practical reasons we extend our essential list to (⊓,⊔,_, ε)
by adding a constant ε to the three binary operators mentioned above. A latarre is a
structure satisfying the universal algebra schemas of a lattice with meet ⊓ and join ⊔,
plus

N1. x _ y = (x ⊔ y) _ y.

N2. x _ y = x _ (x ⊓ y).

N3. x _ (x ⊓ y ⊓ z) ✂ x _ (x ⊓ y).

N4. y _ (y ⊓ z) ✂ (x ⊓ y) _ (x ⊓ y ⊓ z).

N5. (x _ (x ⊓ y)) ⊓ ((x ⊓ y) _ (x ⊓ y ⊓ z)) ✂ x _ (x ⊓ y ⊓ z).

N6. ε _ ε = ε.

Element ε is an important convenience, but no more. With the proof of Proposition 2.1.4
we show that the additions of ε and its schema N6 are conservative over the subsystem
without them. Additionally, given a subsystem without ε, we can add this element in
only one way to get a latarre as defined above. That is, ε with N6 is uniquely definable
over the subsystem.

Let us briefly ignore ε and schema N6. Then the remaining schemas N1 through N5
easily follow from the ‘natural’ schemas near the beginning of this Section. The following
Proposition includes the reverse direction.

Proposition 2.1. Latarres satisfy schemas

1. y ✂ z implies x _ y ✂ x _ z.

2. y ✂ z implies z _ x ✂ y _ x.

3. (x _ y) ⊓ (y _ z) ✂ x _ z.

4. x _ y ✂ z _ z.

Proof. Item 1: Suppose y ✂ z. With N2 and N3 we have x _ y = x _ (x ⊓ y) = x _

(x ⊓ y ⊓ z) ✂ x _ (x ⊓ z) = x _ z.
Item 2: Suppose y ✂ z. With N2 and N4 we have z _ x = z _ (x ⊓ z) ✂ (y ⊓ z) _

(x ⊓ y ⊓ z) = y _ (x ⊓ y) = y _ x.
Item 3: Apply N2, N4, N5, N3, and N2 to get

(x _ y) ⊓ (y _ z) = (x _ (x ⊓ y)) ⊓ (y _ (y ⊓ z)) ✂
(x _ (x ⊓ y)) ⊓ ((x ⊓ y) _ (x ⊓ y ⊓ z)) ✂
x _ (x ⊓ y ⊓ z) ✂ x _ (x ⊓ z) = x _ z.

Item 4: With N2 and N1 we get schema (x⊓y) _ (x⊓y) = (x⊓y) _ y = ((x⊓y)⊔y) _

y = y _ y. So by symmetry we have schema x _ x = (x ⊓ y) _ (x ⊓ y) = y _ y.
The value of z _ z is constant and independent of z. With N2 and N4 we have schema
x _ y = x _ (x ⊓ y) ✂ (x ⊓ y) _ (x ⊓ y) = z _ z.

The proof of Proposition 2.1 does not use N6, and z _ z is constant and the largest
value possible for x _ y. So with N6 we only assign name ε to this constant z _ z of
Proposition 2.1.4. So we have

Corollary 2.2. Latarres satisfy schemas

1. x _ y ✂ ε.

2



2. x _ x = ε.

3. x ✂ y implies x _ y = ε.

4. x _ y = ε implies z _ x ✂ z _ y and y _ z ✂ x _ z.

Proof. Item 3: x ✂ y implies x _ y = x _ (x ⊓ y) = x _ x = ε.
Item 4: x _ y = ε implies z _ x = (z _ x) ⊓ (x _ y) ✂ z _ y and y _ z = (x _

y) ⊓ (y _ z) ✂ x _ z.

In Section 3 we start with trivial examples of latarres that include ones that are
neither distributive nor have a largest element. So ε need not be top. The following are
further examples of schemas that have shown useful.

Proposition 2.3. Latarres satisfy schemas

1. x _ (y ⊓ z) = (x _ y) ⊓ (x _ z).

2. (y ⊔ z) _ x = (y _ x) ⊓ (z _ x).

3. z _ x ✂ (x _ y) ⊓ (y _ z) implies (z _ x) = (z _ y) ⊓ (y _ x). In particular,
z ☎ y ☎ x implies (z _ x) = (z _ y) ⊓ (y _ x).

4. (x _ y) ⊓ (y _ z) = (x ⊔ y) _ (y ⊓ z).

5. y _ z = ε implies (x ⊔ y) _ z = x _ (x ⊓ z) = x _ z.

6. z _ x = ε implies z _ (x ⊓ y) = (z ⊔ y) _ y = z _ y.

7. y _ z ✂ (x ⊓ y) _ (x ⊓ z).

8. (y _ x) ⊓ (y _ z) = (y _ x) ⊓ ((x ⊓ y) _ (x ⊓ z)).

Proof. Item 1: We have

(x _ (x ⊓ y)) ⊓ (x _ (x ⊓ z)) = x _ (x ⊓ y ⊓ z),

where direction ✂ follows with N4 and N5, and direction ☎ follows with two applications
of N3. With N2 this schema is equivalent to

(x _ y) ⊓ (x _ z) = x _ (y ⊓ z).

Item 2: By Proposition 2.1.2 we have (y ⊔ z) _ x ✂ (y _ x) ⊓ (z _ x). Conversely,
with Propositions 2.1.1 and 2.1.3 and with N1 we have (y _ x) ⊓ (z _ x) ✂ (y _

(x⊔z))⊓(z _ x) = ((x⊔y⊔z) _ (x⊔z))⊓((x⊔z) _ x) ✂ ((x⊔y⊔z) _ x) = (y⊔z) _ x.
Item 3: We always have (z _ y) ⊓ (y _ x) ✂ z _ x. In the other direction,

z _ x ✂ (x _ y) ⊓ (y _ z) implies (z _ x) = (z _ x) ⊓ (x _ y) ✂ z _ y and
(z _ x) = (y _ z) ⊓ (z _ x) ✂ y _ x.

Item 4: (x _ y) ⊓ (y _ z) = ((x ⊔ y) _ y) ⊓ (y _ (y ⊓ z)). Apply item 3.
Item 5: (x ⊔ y) _ z = (x _ z) ⊓ (y _ z) = x _ z = x _ (x ⊓ z).
Item 6: z _ (x ⊓ y) = (z _ x) ⊓ (z _ y) = z _ y = (z ⊔ y) _ y.
Item 7: We have y _ z = y _ (y ⊓ z) ✂ (x ⊓ y) _ (x ⊓ y ⊓ z) = (x ⊓ y) _ (x ⊓ z).
Item 8: With item 7 it suffices to show direction ☎. We have (y _ x) ⊓ ((x ⊓ y) _

(x ⊓ z)) = (y _ (x ⊓ y)) ⊓ ((x ⊓ y) _ (x ⊓ z)) ✂ y _ (x ⊓ z) = (y _ x) ⊓ (y _ z).

Besides schemas we also have useful relations between schemas:

Proposition 2.4. Let a, b, and c be elements of a latarre A. Then

1. c ⊓ ε = c ⊓ (b _ a) if and only if A satisfies
schema c ⊓ ((a ⊓ b) _ (a ⊓ x)) = c ⊓ (b _ x).

3



2. A satisfies schema a ⊓ ε ✂ z _ a if and only if A satisfies
schema a ⊓ ((a ⊓ x) _ (a ⊓ y)) = a ⊓ (x _ y).

Proof. Item 1: From right to left, substitute a for x. From left to right with Proposition
2.3.8, c ⊓ ((a ⊓ b) _ (a ⊓ x)) = c ⊓ ε ⊓ ((a ⊓ b) _ (a ⊓ x)) = c ⊓ (b _ a) ⊓ ((a ⊓ b) _

(a ⊓ x)) = c ⊓ (b _ a) ⊓ (b _ x) = c ⊓ ε ⊓ (b _ x) = c ⊓ (b _ x).
Item 2: Clearly a ⊓ ε ✂ z _ a if and only if a ⊓ ε = a ⊓ (z _ a). Apply item 1.

We inductively define ∇nx for all n by ∇0x = x and ∇n+1x = ε _ ∇nx.

Proposition 2.5. Latarres satisfy schemas

1. ∇n(x ⊓ y) = ∇nx ⊓∇ny.

2. x ⊓ y _ z = ε implies y _ x ✂ y _ z.
So x ✂ y _ x plus x ⊓ y _ z = ε implies x ✂ y _ z.

3. x ✂ y _ z implies x ⊓ (w _ y) ✂ w _ z.

4. y _ ε = ε implies ∇x ⊓ ((x ⊓ y) _ (x ⊓ z)) = ∇x ⊓ (y _ z).

5. y _ ε = ε plus x ⊓ y _ z = ε implies ∇x ✂ y _ z.

Proof. Item 1: By induction on n, using Proposition 2.3.1.
Item 2: y _ x = (y _ (x ⊓ y)) ⊓ ((x ⊓ y) _ z) ✂ y _ z.
Item 3 follows immediately with Proposition 2.1.3.
Item 4: Use that ε _ x = (y _ ε) ⊓ (ε _ x) ✂ y _ x, and Proposition 2.3.8.
Item 5: Use that ε _ x = (y _ ε) ⊓ (ε _ x) ✂ y _ x, and item 2.

3 Examples of Latarres

Next we consider some simple examples of latarres and ways to construct more. We do
not aim for maximum generality.

One collection of trivial latarres is the following. Start with any lattice M and any
element m of M. Set x _ y = m for all elements x and y of M. This defines a ‘trivial’
latarre with ε = m and M as underlying lattice.

Definition 3.1. Some of the examples below invite new definitions. Examples: A latarre
is called unitary if the lattice has a top 1 and ε = 1. A latarre is called arrow persistent if
it satisfies schema x⊓ε ✂ y _ x. A latarre is called Heyting if it satisfies schema x = ∇x.
A latarre is called Boolean if it satisfies schema (x _ (x ⊓ y)) _ (x ⊓ y) = x. Obviously
sublatarres of Boolean latarres are again Boolean, sublatarres of Heyting latarres are
again Heyting, sublatarres of arrow persistent latarres are again arrow persistent, and
sublatarres of unitary latarres are again unitary. All latarres satisfy schema ∇x ✂ ε,
so a latarre is unitary arrow persistent exactly when it satisfies schema x ✂ ∇x. So
Heyting latarres are unitary arrow persistent. When we set x = y in the defining schema
of Boolean latarres, we get (x _ x) _ x = ∇x = x. So Boolean latarres are Heyting.

A latarre is called complete if its underlying lattice is a complete lattice. A latarre
is called almost-complete if for each subset S which contains an element,

⊔
S exists or,

equivalently, if for each subset S with a lower bound,
d
S exists. So complete implies

almost-complete. A well-known class of complete latarres is the following. A complete
lattice is called a frame (or a complete Heyting algebra or a locale) when it satisfies
m ⊓ ⊔

S =
⊔{m ⊓ s : s ∈ S}, for all sets of elements {m} ∪ S. The lattice O(X) of

open sets of a topological space forms a frame. On a frame M we can define an arrow
x _ y =

⊔{z : x ⊓ z ✂ y}. The resulting structure (M,_, 1, 0) is a complete Heyting
algebra. Each filter F on frame M is the domain of an almost-complete Heyting latarre
(F,_, 1).

4



A function f : A → B between latarres is called a latarre homomorphism, or simply
a morphism, if f preserves the defining operations of ⊓, ⊔, _, and ε. Latarres are
an equational class, so its class of models is closed under submodels, products, and
(homomorphic) images.

Example 3.2. We can define Boolean algebras in terms of basic operations ⊓, ⊔, _, 0,
and 1, with their usual properties. Complement is definable by −x := x _ 0. When
we ignore 0 as special element and set ε := 1, we get a Boolean latarre, say B. Filters
on B are exactly the upward closed sublatarres of B.

Example 3.3. The claims about Boolean algebras have the expected straightforward
generalization to Heyting algebras and Heyting latarres. When we ignore 0 and set
ε := 1, we get a Heyting latarre, say C. Filters on C are exactly the upward closed
sublatarres of C.

Example 3.4. Define a unitary latarre on lattice N5 as follows. In the diagram of N5

below, labels x, y, and z mean that we set 1 _ b = y, set b _ a = z, and so on. The
letters x, y and z are values to be chosen freely from the domain {0, a, b, p, 1} with the
only restrictions that x ✂ z and y ✂ z.

1y

ooooooooo

x

//
//

//
//

b

z p

y

��
��
��
��

a

x OOOOOOOOO

0

The properties of unitary latarres allow us to uniquely extend the arrow by p _ p = 1
and 1 _ a = (1 _ b)⊓ (b _ a) = y ⊓ z = y and a _ p = a _ a⊓ p = a _ 0 = x, and so
on. Verifying the arrow axioms is tedious but straightforward.

Here are two results on how to construct new latarres from old.

Proposition 3.5. Let A = (M,⊔,_, ε) be a latarre and f : M → M be a meet semilat-
tice endomorphism. Define Af = (M,⊔,_f , f(ε)) by a _f b = f(a _ b). Then Af is a
latarre.

Proof. All arrow axioms are easily verified. For example,

(x _f (x ⊓ y)) ⊓ ((x ⊓ y) _f (x ⊓ y ⊓ z)) =
f(x _ (x ⊓ y)) ⊓ f((x ⊓ y) _ (x ⊓ y ⊓ z)) =
f((x _ (x ⊓ y)) ⊓ ((x ⊓ y) _ (x ⊓ y ⊓ z))) ✂
f(x _ (x ⊓ y ⊓ z)) = x _f (x ⊓ y ⊓ z).

Proposition 3.6. Let A = (N,_, ε) be a latarre and g : N → N be a lattice endomor-
phism. Define Ag = (N,_g, ε) by a _g b = g(a) _ g(b). Then Ag is a latarre.

Proof. All arrow axioms are easily verified. For example, (x ⊔ y) _g y == g(x ⊔ y) _

gy = (gx ⊔ gy) _ gy = gx _ gy = x _g y.

Example 3.7. Let f : A → A be a bijection on set A. Then f extends to a bijection
f : P(A) → P(A) on the power set of A, defined by f(X) = {f(x) : x ∈ X}. Following
Example 3.2, power set P(A) is the domain of a complete Boolean latarre B = (M,⊔,_
, ε) with ε = A, and P(A) is also the domain of the corresponding meet semilattice M.
Clearly f is a semilattice morphism on M. By Proposition 3.5 we get a new latarre Bf

from B by redefining X _f Y := f(X _ Y ) = f(Xc ∪ Y ).

5



Example 3.8. Let g : A → A be a continuous function on a topological space O(A).
Then inverse image map h = g−1 : O(A) → O(A) is a meet semilattice morphism on
the meet semilattice part N of the frame (or complete Heyting algebra, or locale) O(A).
Following Example 3.3, N is the meet semilattice part of the corresponding complete
Heyting latarre C = (N,⊔,_, A). By Proposition 3.5 we get a new latarre Ch from C

by redefining εh = g−1(ε) and U _h V = h(U _ V ) = g−1(U _ V ) =
⋃{g−1(W ) :

W ∩ U ⊆ V }. Map h = g−1 is also a lattice morphism on (N,⊔). So by Proposition 3.6
we get another new latarre Ch from C by redefining U _h V = g−1(U) _ g−1(V ) =⋃{W : g(W ∩ g−1(U)) ⊆ V }.

Here are two other results on how to construct new latarres from old.

Proposition 3.9. Let f : M → N be a lattice morphism, and g : N → M be map
which preserves meet ⊓. Let B = (N,_, ε) be a latarre. Define εm and _m on M by
εm = g(ε) and x _m y = g(f(x) _ f(y)). Then A = (M,_m, εm) is a latarre.

Proof. It suffices to check the following schemas.
Clearly x _m x = g(f(x) _ f(x)) = g(ε) = εm, and x _m y ✂ εm.
We have (y ⊔ z) _m x = g(f(y ⊔ z) _ f(x)) = g((f(y)⊔ f(z)) _ f(x)) = g((f(y) _

f(x)) ⊓ (f(z) _ f(x))) = g(f(y) _ f(x)) ⊓ g(f(z) _ f(x)) = (y _m x) ⊓ (z _m x).
We have x _m (y ⊓ z) = g(f(x) _ f(y ⊓ z)) = g(f(x) _ (f(y)⊓ f(z))) = g((f(x) _

f(y)) ⊓ (f(x) _ f(z))) = g(f(x) _ f(y)) ⊓ g(f(x) _ f(z)) = (x _m y) ⊓ (x _m z).
Finally, (x _m y) ⊓ (y _m z) = g(f(x) _ f(y)) ⊓ g(f(y) _ f(z)) = g((f(x) _

f(y)) ⊓ (f(y) _ f(z))) ✂ g(f(x) _ f(z)) = x _m z.

Map f : A → B of Proposition 3.9 need not be a latarre morphism. By Proposition
3.5 we have a latarre Bfg = (N,_fg, fg(ε)) with x _fg y = fg(x _ y). Map f : A →
Bfg is a latarre morphism.

Suppose map g : N → M of Proposition 3.9 is a lattice morphism. Map g : B → A

need not be a latarre morphism. By Proposition 3.6 we have a latarre Bfg = (N,_fg, ε)
with x _fg y = fg(x) _ fg(y). Map g : Bfg → A is a latarre morphism.

Proposition 3.10. Let A1 = (M, ε1 _1) and A2 = (M, ε2,_2) be latarres on the same
lattice M. Define A = (M, ε,_) by ε = ε1 ⊓ ε2 and x _ y = (x _1 y)⊓ (x _2 y). Then
A is a latarre.

Proof. All arrow properties are easy. For example, x _ (y⊓ z) = (x _1 (y⊓ z))⊓ (x _2

(y ⊓ z)) = (x _1 y) ⊓ (x _1 z) ⊓ (x _2 y) ⊓ (x _2 z) = (x _ y) ⊓ (x _ z).

Suppose lattice M in Proposition 3.10 is complete, and {As : s ∈ S} is a collection
of latarres As = (M,_s, εs). Then AS =

d{As : s ∈ S} = (M,_S , εS) with x _S

y =
d{x _s y : s ∈ S} and εS =

d{εs : s ∈ S} is a well-defined structure. An easy
verification of the arrow properties shows that AS is a latarre.

Example 3.11. Here is an application of Proposition 3.9. Let B2 = (N2,_, 1) be the
usual Boolean algebra with domain {0, 1}, but treated as a Boolean latarre which happens
to have a least element. So N2 is a 2-element linearly ordered lattice. Let F be a prime
filter on a lattice M. The map f : M → N2 defined by f(x) = 1 exactly when x ∈ F , is a
lattice morphism. Let a ✂ b be elements of M. Define map g : N2 → M by g(1) = b and
g(0) = a. Clearly g preserves meet ⊓. On M define x _m y = g(f(x) _ f(y)). Then
A = (M,_m, b) is a latarre. For all x and y in A we have x _m y = b or x _m y = a.
If x ∈ F and y /∈ F , then x _m y = a. If x /∈ F or y ∈ F , then x _m y = b.

We can combine the construction above with Proposition 3.10. Given prime filters
F and G on lattice M, and pairs a ✂ b and c ✂ d of elements of M, we apply the
construction above twice to build, besides A = (M,_m, b), another latarre B = (M,_n

, d). Proposition 3.10 allows us to form a new latarre C = (M,_, b ⊓ d) satisfying

6



x _ y = (x _m y) ⊓ (x _n y). The domain M of M is the disjoint union of the sets
e = F ∩G, p = F \G, q = G \ F , and o = M \ (F ∪G). The value of x _ y depends on
which set the elements x or y belong to, as implied by the table

_ e p q o
e b ⊓ d b ⊓ c a ⊓ d a ⊓ c
p b ⊓ d b ⊓ d a ⊓ d a ⊓ d
q b ⊓ d b ⊓ c b ⊓ d b ⊓ c
o b ⊓ d b ⊓ d b ⊓ d b ⊓ d

Example 3.12. Let R be a commutative ring. Its collection of ideals is closed under
intersections, so forms a complete lattice ordered by set inclusion, Let M be the complete
lattice of ideals, with I ⊓ J = I ∩ J for all ideals I and J . Lattice M need not be
distributive. An ideal I is called a radical ideal if r2 ∈ I implies r ∈ I, for all r ∈ R.
The set

√
I = {r ∈ R : rn ∈ I for some n} is the least radical ideal containing I. Given

ideals I and J , the set J : I = {r ∈ R : rI ⊆ J} is an ideal. We construct a unitary
complete latarre A on lattice M as follows. Set I _ J =

√
J : I and ε = R. It suffices

to check the following schemas.
I : I = R, so I _ I = R = ε is the largest ideal.
Clearly (I⊔J) _ K ✂ (I _ K)⊓(J _ K). Conversely, suppose r ∈ (I _ K)⊓(J _

K). So there is n with rnI ⊆ K and rnJ ⊆ K. Let s ∈ I ⊔ J . There are i ∈ I and j ∈ J
with s = i+ j. So rns = rni+ rnj ∈ K. Thus r ∈ (I ⊔ J) _ K.

Clearly I _ (J ⊓K) ✂ (I _ J) ⊓ (I _ K). Conversely, suppose r ∈ (I _ J) ⊓ (I _

K). So there is n with rnI ⊆ J and rnI ⊆ K. So rnI ⊆ J ∩ K = J ⊓ K. Thus
r ∈ I _ (J ⊓K).

Finally, suppose r ∈ (I _ J) ⊓ (J _ K). So there is n with rnI ⊆ J and rnJ ⊆ K.
So r2nI ⊆ K. Thus r ∈ (I _ K).

So we have a latarre A = (M,_, R) of ideals of R with I ⊓ (I _ J) = I ⊓
√
J .

Example 3.13. This example is motivated by the Kripke models and theory of Visser’s
Basic Propositional Logic, see [8] and [3]. Let (K,≺) be a set with relation x ≺ y
satisfying the schemas of anti-symmetry (x ≺ y) ∧ (y ≺ x) → (x = y) and transitivity
(x ≺ y) ∧ (y ≺ z) → (x ≺ z). So each node may or may not be reflexive. On the lattice
M of the Alexandrov topology O(K) on the collection

{u ⊆ K : ∀k,m ∈ K(u ∋ k ≺ m → u ∋ m)}

of upward closed subsets of K we define

u _ v = {k ∈ K : ∀m ∈ K((k ≺ m) ∧ (m ∈ u) → (m ∈ v))}.

Then A = (M,_,K) is a latarre such that (M,_,K, ∅) is a Visser algebra as in [2]
(called a Basic algebra in [3]). Here is another way to see this. We have the usual
complete Heyting algebra (O(K),_i,K, ∅). Define operator j : O(K) → O(K) by ju =
{k ∈ K : ∀m ∈ K((k ≺ m) → (m ∈ u))}. Then j preserves meets (is multiplicative),
and x _ y = j(x _i y). Apply Proposition 3.5. Note that ∇x = jx.

Example 3.14. Let O(X) be a T0 topological space. So we have a complete Heyting
latarre A = (O(X),_, X). Define operator j : O(X) → O(X) by

ju =
⊔{u ∪ {x} : u ∪ {x} is open}.

So ju extends u with all isolated elements of the complement of u. Operator j preserves
meets (is multiplicative), so by Proposition 3.5 we can define x _j y = j(x _ y) and
get a new latarre (O(X),_j , X). Note that ∇jx = X _j x = jx. Even in the case of
O(R), the usual topology on the reals, there are u with jn+1u 6= jnu for all n.

7



Example 3.15. This example generalizes Example 3.14 from T0 topological spaces to
almost-complete frames. Let M = (M,⊓,⊔) be an almost-complete lattice. We define v
covers or equals u, written u ✂1 v, by

u ✂1 v ↔ (u ✂ v ∧ ∀t(u ✂ t ✂ v → (u = t ∨ t = v))).

If M is the lattice of a T0 space O(X), then u ✂1 v exactly when there is ξ ∈ X with
u ✂ v ✂ u ∪ {ξ}. Define operator j : M → M by

jx =
⊔{u : x ✂1 u}.

Map j is well-defined, and x ✂ jx.
Now add that M is modular. Claim: j is order preserving.

Proof of the claim: Suppose x ✂ y. To show: jx ✂ jy. Let x ✂1 v. It suffices to show
that y ✂1 y ⊔ v. We have x ✂ y ⊓ v ✂ v, so x = y ⊓ v or y ⊓ v = v. If y ⊓ v = v, then
y ⊔ v = y and we are done. Suppose x = y ⊓ v. By the classic modularity Theorem 6.1,
interval sublattice [y, y ⊔ v] is isomorphic to [y ⊓ v, v] = [x, v]. Thus y ✂1 y ⊔ v.

We need the auxiliary claim: x ✂1 v implies x ⊓ y ✂1 v ⊓ y.
Proof of the auxiliary claim: By modularity, interval sublattice [x⊓y, v⊓y] is isomorphic
to [x, x⊔ (v⊓y)]. Since x ✂ x⊔ (v⊓y) ✂ v we have x ✂1 x⊔ (v⊓y). Thus x⊓y ✂1 v⊓y.

Now add that M is distributive. Claim: x ✂1 u and y ✂1 v implies u ⊓ v ✂ j(x ⊓ y).
Proof of the claim: By the auxiliary claim above we have x ⊓ y ✂1 u ⊓ y ✂1 u ⊓ v and
x ⊓ y ✂1 x ⊓ v ✂1 u ⊓ v. So u ⊓ y ✂ j(x ⊓ y) and x ⊓ v ✂ j(x ⊓ y). If x ⊓ y = u ⊓ y or
u ⊓ y = u ⊓ v or x ⊓ y = x ⊓ v or x ⊓ v = u ⊓ v, then x ⊓ y ✂1 u ⊓ v, so u ⊓ v ✂ j(x ⊓ y)
and we are done. We have x ✂ x ⊔ (u ⊓ y) ✂ u, so x = x ⊔ (u ⊓ y) or x ⊔ (u ⊓ y) = u.
If x = x ⊔ (u ⊓ y), then u ⊓ y ✂ x, so u ⊓ y = x ⊓ y and we are done. So we may
suppose that x ⊔ (u ⊓ y) = u or, with modularity, that u ⊓ (x ⊔ y) = u ☎ x. Similarly
we may suppose that v ⊓ (x ⊔ y) = v ☎ y. So u ⊔ v = x ⊔ y. With distributivity,
u⊓v⊓ ((u⊓y)⊔ (x⊓v)) = u⊓v⊓ (x⊔y) = u⊓v. Thus u⊓v ✂ (u⊓y)⊔ (x⊓v) ✂ j(x⊓y).

Finally add that M is an almost-complete frame. Then jx ⊓ jy =
⊔{u : x ✂1 u} ⊓⊔{v : y ✂1 v} =

⊔{u ⊓ v : x ✂1 u ∧ y ✂1 v} ✂ j(x ⊓ y). Thus j preserves meets (is
multiplicative).

On almost-complete frame M we can define the usual Heyting latarre A = (M,_, 1).
With Proposition 3.5 we get another latarre Aj = (M,_j , 1) by defining x _j y =
j(x _ y). This generalizes Example 3.14 from T0 topological spaces to almost-complete
frames.

4 General Substitution Rules

In this Section we consider substitution rules that apply to all latarres. Later we consider
further substitution rules that only apply in special cases.

With each latarre A we associate a predicate logic language L(A) in the expected
way, with function symbols that correspond with the defining functions of A, and with
for each element of A a constant symbol. Whenever convenient, we use the functions of
the model themselves as symbols in the language. In our approach constants are nullary
functions, and constant symbols are nullary function symbols. For convenience we may
write t(x) even if term t(x) has other variables besides x. Given a term t(x) of L(A), we
define positivity and negativity of occurrences of x in t(x) in the usual inductive way.

Proposition 4.1. Let t(x) be a term over a latarre A. If x is only positive in t(x), then
x ✂ y implies t(x) ✂ t(y). If x is only negative in t(x), then x ✂ y implies t(y) ✂ t(x).

Proof. Both claims are proved simultaneously by induction on the complexity of t(x).
The case for atoms is trivial. For the induction steps use the rules

8



x ✂ y implies z ◦ x ✂ z ◦ y for ◦ ∈ {⊓,⊔,_}, and
x ✂ y implies y _ z ✂ x _ z.

Definition 4.2. An x occurs at depth n ≥ 0 in term t(x) if x occurs n levels deep inside
implication subformulas of implication subformulas and so on. So x occurs at depth 2
in (y _ (w ⊓ (x ⊔ v))) _ z, and x occurs at depth n in ∇nx. The x occurs informally
if depth n = 0, otherwise x occurs formally. Obviously informal occurrences are always
positive, and negative occurrences are always formal.

Proposition 4.3. Let t(x) be a term over a latarre A and n ≥ 0 be such that x only
occurs at depth n in t(x). If x is only positive in t(x), then A satisfies schema ∇n(x _

y) ✂ t(x) _ t(y). If x is only negative in t(x), then A satisfies schema ∇n(x _ y) ✂
t(y) _ t(x).

Proof. We may suppose that x occurs only once in t(x). For example if t(x) = u(x, x)
for a term u(z, w) with z and w negative, we use ∇n(x _ y) ✂ (u(y, y) _ u(y, x)) ⊓
(u(y, x) _ u(x, x)) ✂ t(y) _ t(x). Given this supposition, we complete the proof by
induction on n.

We complete the proof of case n = 0 by induction on the complexity of t(x). In
this case x is positive in t(x). The cases of t(x) equal to x or without x are trivial. The
induction step on the complexity of t(x): Suppose t(x) equals p⊓q(x). With induction we
have (p⊓q(x)) _ (p⊓q(y)) = (p⊓q(x)) _ q(y) ☎ q(x) _ q(y) ☎ x _ y. Suppose t(x) has
form p⊔ q(x). Then (p⊔ q(x)) _ (p⊔ q(y)) = q(x) _ (p⊔ q(y)) ☎ q(x) _ q(y) ☎ x _ y.

Induction step: Suppose the case holds for some value n, and suppose x occurs in t(x)
at depth n+1. There is a least subterm u(x) of t(x) in which x occurs at depth n+1. So
t(x) = v(u(x)) where x is informal in v(x). Subterm u(x) is of the form r _ s(x) or of
the form s(x) _ r, with x at depth n in s(x). We have four combinations of x occurring
positive or negative in u(x) and x occurring positive or negative in s(x). Here is one of
these four cases. Suppose x is positive in u(x) and negative in s(x). So u(x) is of the form
s(x) _ r. Then with induction ∇n+1(x _ y) ✂ (s(x) _ r) _ (∇n(x _ y) ⊓ (s(x) _

r)) ✂ (s(x) _ r) _ ((s(y) _ s(x)) ⊓ (s(x) _ r)) ✂ (s(x) _ r) _ (s(y) _ r) = u(x) _

u(y). By the already proven case for n = 0 we have u(x) _ u(y) ✂ v(u(x)) _ v(u(y)).
So ∇n+1(x _ y) ✂ t(x) _ t(y). The proofs of the other three cases of the four are
similar. This completes the induction step.

So by induction the claim holds for all n ≥ 0.

Some example special cases of Proposition 4.3 are: Let t(x) be a term in which x is
only positive. There is n such that all x occur at depth at most n in t(x). So

d

i≤n ∇i(x _ y) ✂ t(x) _ t(y).

Another example. Given a term t(x) in which x is only negative, let a and b be elements
such that a _ b ✂ ∇(a _ b). Then a _ b ✂ ∇n(a _ b) for all n ≥ 0, and

a _ b ✂ t(b) _ t(a).

We do not always have that x positive in t(x) implies x _ y ✂ t(x) _ t(y). For
otherwise with t(x) = ∇x it would imply x _ y ✂ (ε _ x) _ (ε _ y), so in particular
with x = ε we would have ∇y ✂ ∇2y. Here is a counterexample to this last equation.
Consider the Boolean lattice M.

M 1

��
��

�
??

??
?

a

??
??

? b

��
��

�

0

9



By Example 3.7 we have a (unique) unitary latarre on M with ε _ a = 1 _ a = b and
1 _ b = a. So ∇b = a and ∇2b = b.

Proposition 4.4. Let t(x) be a term built without join ⊔ over a latarre A, and n ≥ 1 be
such that x only occurs at depth n in t(x). If x is only positive in t(x), then A satisfies
schema ∇n−1(x _ y)⊓ t(x) ✂ t(y). If x is only negative in t(x), then A satisfies schema
∇n−1(x _ y) ⊓ t(y) ✂ t(x).

Proof. We may suppose that x occurs at most once in t(x). There is a least subterm
u(x) of t(x) such that x is at depth n in u(x) and t(x) equals v(u(x)) for a term v(x). So
x is informal in v(x). Term u(x) has form r _ s(x) or form s(x) _ r, with x at depth
n− 1 in s(x). We have four combinations of x occurring positive or negative in u(x) and
x occurring positive or negative in s(x). Here is one of these four cases. Suppose x is
positive in u(x) and positive in s(x). So u(x) has form r _ s(x). With Proposition 4.3
we have u(x) ⊓∇n−1(x _ y) ✂ u(x) ⊓ (s(x) _ s(y)) ✂ u(y). We complete the proof for
all t(x) by induction on the complexity of v(x). Since x is informal in v(x), the following
observation suffices. If q(x) ✂ q(y), then p ⊓ q(x) ✂ p ⊓ q(y). The proofs of the other
three cases of the four are similar.

In the proof of Proposition 4.4 an induction step for ⊔ may fail unless extra conditions
are employed as in Proposition 5.9. For ∇n−1(x _ y) ⊓ q(x) ✂ q(y) need not imply
∇n−1(x _ y)⊓ (p⊔ q(x)) ✂ p⊔ q(y). Here is an example where equation (x _ y)⊓ (b _

x) ✂ b _ y holds and equation (x _ y) ⊓ (p ⊔ (b _ x)) ✂ p ⊔ (b _ y) is false. Consider
the modular lattice M.

M 1

��
��

��
??

??
??

p

??
??

??
q r

��
��

��

b

x

y

By Proposition 6.4.9 and Theorem 6.8 we can construct a unitary latarre on M with
b _ x = r and x _ y = q. So b _ y = r ⊓ q = b, and (x _ y) ⊓ (p ⊔ (b _ x)) =
q ⊓ (p ⊔ r) = q ⊓ 1 = q, while p ⊔ (b _ y) = p ⊔ b = p.

Proposition 4.5. Let t(x) be a term over a latarre A in which x occurs only at depths
at least n in t(x), for some n ≥ 1. Let a, b ∈ A be such that ∇n−1(a _ b) = ε. If x is
only positive in t(x), then t(a) ✂ t(b). If x is only negative in t(x), then t(b) ✂ t(a).

Proof. We may suppose that x occurs exactly once in t(x). There is a least subterm u(x)
of t(x) such that x is at depth n in u(x) and t(x) equals v(u(x)) for a term v(x). Term
u(x) is of the form r _ s(x) or of the form s(x) _ r with x at depth n− 1 in s(x). We
have eight combinations of x occurring positive or negative in v(x), positive or negative
in u(x), and positive or negative in s(x). Here is one of these eight cases. Suppose x is
positive in v(x), negative in u(x), and positive in s(x). So u(x) has form s(x) _ r. By
Proposition 4.3 we have s(a) _ s(b) = ε. So u(b) = (s(a) _ s(b)) ⊓ (s(b) _ r) ✂ u(a).
So by Proposition 4.1 we have t(b) = v(u(b)) ✂ v(u(a)) = t(a). The proofs of the other
seven cases of the eight are essentially the same.

Write x]y as short for (x _ y)⊓ (y _ x). If x is only formal in t(x), then a] b = ε
implies t(a) = t(b). The following is essentially a special case of Proposition 4.5.

10



Proposition 4.6. Let t(x) be a term over a latarre A, and a, b ∈ A are such that
a _ b = ε. If x is only positive in t(x), then t(a) _ t(b) = ε. If x is only negative in
t(x), then t(b) _ t(a) = ε.

Proof. Given a _ b = ε, suppose x is positive in t(x). Let u(y, x) be term t(y) _ t(x). So
x is positive and formal in u(y, x). By Proposition 4.5 we have t(y) _ t(a) ✂ t(y) _ t(b).
Substitution of a for y gives ε = t(a) _ t(a) ✂ t(a) _ t(b). The proof for x negative in
t(x) is similar.

Example 4.7. Proposition 4.6 allows for another technique by which to construct new
latarres from old ones. Given a latarre A, define equivalence relation x ∼ y by x]y = ε.
We write a(1) or a′ for the equivalence class of a, and A(1) or A′ for the collection of
equivalence classes. In fact relation x ∼ y a congruence. For on this collection A′ we can
define the following derived latarre. If a] b = ε, then t(a)] t(b) = ε for all terms t(x).
So the following are well-defined on A′: Define x′ ⊓′ y′ = (x ⊓ y)′ and x′ ⊔′ y′ = (x ⊔ y)′

and x′ _′ y′ = (x _ y)′. So with these operations, A′ = (A′,⊓′,⊔′,_′, ε′) is a latarre,
and the map x 7→ x′ is an onto latarre morphism from A onto A′. Now a′ ✂′ b′ exactly
when (a ⊓ b)′ = a′ exactly when ε = (a ⊓ b) ] a = a _ b. So a′ ✂′ b′ exactly when
a _ b = ε.

We can repeat this construction and form A′′ = A(2) by defining x′ ∼ y′ on A′ by
(x]y)′ = x′]′ y′ = ε′ or, equivalently, by (x]y) ∼ ε, that is, (x]y)]ε = ε. That is,
by ∇(x] y) = ∇(x _ y) ⊓∇(y _ x) = ε. Both by repeating the previous construction
of A′ from A, or by a direct appeal to Proposition 4.6, do we see that we have a latarre
and onto morphisms A → A′ → A′′ in the expected way. Continuing in this way, we get
a chain

A = A(0) → A(1) → A(2) → A(3) → . . .

with for all a, b ∈ A and n ≥ 1 we have a(n) = b(n) in A(n) exactly when ∇n−1(a]b) = ε.
A sketch of a proof of this last claim, by induction on n, runs as follows. Suppose in
A(n) we have x(n) = y(n) exactly when ∇n−1(x ] y) = ε. To construct A(n+1) we set
x(n) ∼ x(n) iff x(n) ](n) y(n) = ε(n) iff (x ] y)(n) = ε(n) iff ∇n−1((x ] y) ] ε) = ε iff
∇n(x ] y) = ε.

5 Visser Latarres and Meet Substitution

In this Section we establish the close connection between weakly Visser latarres and
(relative) meet substitution. But first we get some naming conventions settled.

Definition 5.1. The following is a non-exhaustive list of varieties of distributive latarres.

A distributive latarre is a latarre satisfying schema x ⊓ (y ⊔ z) = (x ⊓ y) ⊔ (x ⊓ z).

A CJ latarre is a unitary distributive latarre.

A Visser latarre is a distributive latarre satisfying the schema x ✂ ∇x of unitary
arrow persistence.

As defined in Example 3.1, a Heyting latarre is a latarre satisfying schema x = ∇x.
With Proposition 5.2 we show that Heyting latarres are distributive.

As defined in Example 3.1, a Boolean latarre is a latarre satisfying the schema (x _

(x ⊓ y)) _ (x ⊓ y) = x. In Example 3.1 we showed that Boolean latarres are Heyting.

Each of the varieties of latarres listed above is contained in the preceding one. A
unitary arrow persistent latarre need not be distributive, since all lattices with top 1
turn into unitary arrow persistent latarres when we define x _ y = 1.

11



CJ latarres with a least element 0 are the same as CJ algebras as explained below, and
Visser latarres with a least element 0 are the same as Visser algebras. With Proposition
5.2 below it is a straightforward standard task to establish that Heyting latarres with
a least element 0 are the same as Heyting algebras, and Boolean latarres with a least
element 0 are the same as Boolean algebras. We imagine that the names of Visser
latarre, Heyting latarre, and Boolean latarre are sufficiently motivated by [2], and by the
extensive literature on Heyting algebras and Boolean algebras. CJ latarres with a least
element 0 are defined by Celani and Jansana in [5] as weakly Heyting algebras. In the
context of names like Boolean latarre, Heyting latarre, and Visser latarre, we imagine
that the choice of the name CJ latarre is a natural approximation of a continuation of
this pattern.

We choose to say little about Boolean latarres or Heyting latarres since their prop-
erties are essentially as the well-known ones of the literature. We make an exception for
the following fundamental result.

Proposition 5.2. The following are equivalent for a latarre A.

1. A is Heyting.

2. A satisfies x ⊓ y ✂ z if and only if x ✂ y _ z, for all x, y, and z.

Item 2 implies distributivity.

Proof. Suppose item 1. So A is unitary. With Proposition 2.5.3 we get that x ✂ y _ z
implies x ⊓ y ✂ z. With Proposition 2.5.2 we get that x ⊓ y ✂ z implies x ✂ y _ z. So
item 2 holds.

Suppose item 2. Setting y = z implies that A is unitary, so ε = 1. Setting x = z and
y = 1 gives schema z ✂ ∇z. Setting x = ∇z and y = 1 gives schema ∇z ✂ z. So A is
Heyting.

Finally, item 2 implies that A as a poset category has for all elements a a pair of
functors, left adjoint x 7→ a ⊓ x and right adjoint z 7→ a _ z. The left adjoints preserve
colimits, which implies distributivity.

Generalizing from Example 3.1, an element a of a latarre is called arrow persistent
if it satisfies schema a ⊓ ε ✂ y _ a. Element a is called unitary arrow persistent if it
satisfies schema a ✂ y _ a. So a is unitary arrow persistent exactly when both a ✂ ε
and a is arrow persistent. A weakly Visser latarre is a distributive latarre satisfying the
schema x⊓ε ✂ y _ x of arrow persistence. So a Visser latarre is a unitary weakly Visser
latarre.

Proposition 5.3. The following are equivalent for an element a of a latarre.

1. a is arrow persistent.

2. a ⊓ (a _ y) ✂ z _ y, for all y and z.

3. (a ⊓ y _ z) = ε implies a ⊓ ε ✂ y _ z, for all y and z.

4. a ⊓ y ✂ z implies a ⊓ ε ✂ y _ z, for all y and z.

Proof. Suppose item 1. Then a⊓ (a _ y) ✂ (z _ a)⊓ (a _ y) ✂ z _ y, so item 2 holds.
Item 2 immediately implies item 1 by setting y = a. Suppose item 1. To prove item 3,
suppose a ⊓ y _ z = ε. Then a ⊓ ε ✂ y _ a = (y _ (a ⊓ y)) ⊓ (a ⊓ y _ z) ✂ y _ z.
Item 3 immediately implies item 4. Suppose item 4. Setting z = a immediately implies
item 1.

Corollary 5.4. The following are equivalent for an element a of a latarre.

12



1. a is unitary arrow persistent.

2. a ✂ ε, and a ⊓ (a _ y) ✂ z _ y, for all y and z.

3. (a ⊓ y _ z) = ε implies a ✂ y _ z, for all y and z.

4. a ⊓ y ✂ z implies a ✂ y _ z, for all y and z.

Arrow persistence allows for some stronger substitution rules than in Section 4.

Proposition 5.5. Let t(x) be a term built without join ⊔ over a latarre A, and n ≥ 1
be such that x only occurs at depth at least n in t(x). Let a and b be elements of A such
that a _ b is arrow persistent. If x is only positive in t(x), then A satisfies ∇n−1(a _

b)⊓ t(a) ✂ t(b). If x is only negative in t(x), then A satisfies ∇n−1(a _ b)⊓ t(b) ✂ t(a).

Proof. We have a _ b = (a _ b) ⊓ ε ✂ ∇(a _ b). So ∇k(a _ b) ✂ ∇m(a _ b) for all
m ≥ k ≥ 0. Apply Proposition 4.4.

Proposition 5.6. Let t(x) be a term over a latarre A, and n ≥ 0 be such that x only
occurs at depth at least n in t(x). Let a and b be elements of A such that a _ b is arrow
persistent. If x is only positive in t(x), then A satisfies ∇n(a _ b) ✂ t(a) _ t(b). If x
is only negative in t(x), then A satisfies ∇n(a _ b) ✂ t(b) _ t(a).

Proof. We have a _ b = (a _ b) ⊓ ε ✂ ∇(a _ b). So ∇k(a _ b) ✂ ∇m(a _ b) for all
m ≥ k ≥ 0. Apply Proposition 4.3.

As a preliminary to our definition of meet substitution, we consider the following
latarre constructions. Given a latarre A and element a, we construct a latarre on the
subset {x ∈ A : x ✂ a} as follows. Set

εa = ε ⊓ a,
x ⊓a y = x ⊓ y,
x _a y = a ⊓ (x _ y), and
x ⊔a y = x ⊔ y.

The resulting structure Aa is easily seen to be a latarre. The following are clear or
straightforward. If a ✂ ε, then Aa is unitary. If A is unitary, arrow persistent, Visser,
Heyting, or Boolean, then so is Aa.

The function πa(x) = a ⊓ x is an idempotent map from A onto Aa. In general πa is
not a latarre morphism. Below we establish precisely when πa is a morphism.

Morphism properties of πa can be expressed in terms of substitution. Given a term
t(x) and element a of latarre A, we say that t(x) admits meet substitution over (A, a) if
A satisfies schema

a ⊓ x = a ⊓ y implies a ⊓ t(x) = a ⊓ t(y).

One easily verifies that this notion of substitution over (A, a) is equivalent to schema

a ⊓ t(x) = a ⊓ t(a ⊓ x),

which is a universal equation. We write T (A, a) for the collection of terms over A that
admit meet substitution over (A, a). We define that A admits meet substitution if T (A, a)
includes all terms for all a ∈ A.

Proposition 5.7. Let a be an element of latarre A. Then the collection T (A, a) contains
all terms without x, the term x itself, and is closed under ⊓ and under composition.
Additionally:

1. A satisfies schema a ⊓ ε ✂ x _ a if and only if T (A, a) is closed under _.

13



2. A satisfies schema a ⊓ (x ⊔ y) = (a ⊓ x) ⊔ (a ⊓ y) if and only if T (A, a) is closed
under ⊔.

Proof. The cases for terms without x and term x itself are easy. Suppose t(x), u(x) ∈
T (A, a) and a ⊓ x = a ⊓ y. Then a ⊓ t(x) = a ⊓ t(y) implies a ⊓ t(x) ⊓ u(x) = a ⊓
t(y) ⊓ u(x), and a ⊓ u(x) = a ⊓ u(y) implies a ⊓ t(y) ⊓ u(x) = a ⊓ t(y) ⊓ u(y). Thus
a ⊓ t(x) ⊓ u(x) = a ⊓ t(y) ⊓ u(y). As to closure under composition, a ⊓ t(x) = a ⊓ t(y)
and the universal validity of common substitution give u(a ⊓ t(x)) = u(a ⊓ t(y)) and so
a ⊓ u(t(x)) = a ⊓ u(a ⊓ t(x)) = a ⊓ u(a ⊓ t(y)) = a ⊓ u(t(y)).

Additional item 1: From left to right follows from Proposition 2.4.2. Conversely,
closure of T (A, a) under _ implies schema a ⊓ (a ⊓ x _ a ⊓ y) = a ⊓ (x _ y). By
Proposition 2.4.2 this implies schema a ⊓ ε ✂ x _ a. An alternate argument for the
converse: Closure of T (A, a) under _ implies a ⊓ ε = a ⊓ (a ⊓ x _ a) = a ⊓ (x _ a) ✂
x _ a.

Additional item 2: The equivalence easily follows with schema a⊓((a⊓x)⊔(a⊓y)) =
(a ⊓ x) ⊔ (a ⊓ y).

As a Corollary we get:

Theorem 5.8. The following are equivalent for a latarre A.

1. A is weakly Visser.

2. For all elements a of A the map πa : A → Aa is a latarre morphism.

3. A admits meet substitution.

Theorem 5.10 below is an extension of Proposition 5.5 for weakly Visser latarres. For
its proof we first present an extension of Proposition 4.4 for distributive latarres.

Proposition 5.9. Let t(x) be a term over a distributive latarre A, and n ≥ 1 be such
that x only occurs at depth n in t(x). If x is only positive in t(x), then A satisfies
schema ∇n−1(x _ y)⊓ t(x) ✂ t(y). If x is only negative in t(x), then A satisfies schema
∇n−1(x _ y) ⊓ t(y) ✂ t(x).

Proof. The proof is as for Proposition 4.4, but with the following modifications of its last
few lines: Since x is informal in v(x), the following observations suffice. If q(x) ✂ q(y),
then p ⊓ q(x) ✂ p ⊓ q(y) and (p ⊔ q(x)) ⊓ r = (p ⊓ r) ⊔ (q(x) ⊓ r) ✂ (p ⊓ r) ⊔ (q(y) ⊓ r) =
(p ⊔ q(y)) ⊓ r. The proofs of the other three cases of the four are similar.

Theorem 5.10. Let t(x) be a term over a weakly Visser latarre A, and n ≥ 1 be such
that x only occurs at depth at least n in t(x). If x is only positive in t(x), then A

satisfies schema ∇n−1(x _ y)⊓ t(x) ✂ t(y). If x is only negative in t(x), then A satisfies
∇n−1(x _ y) ⊓ t(y) ✂ t(x).

Proof. Weakly Visser latarres are distributive, and all elements of the form x _ y are
arrow persistent. Apply Propositions 5.9 and 5.5.

6 Modular Latarres

Many of the latarres that we consider are distributive. One motivation for this Section
is to show that there are many latarres that are not distributive. In this Section we give
precise criteria for constructing latarres on all modular lattices whose interval sublattices
[m,n] have finite height. Our methods are motivated by [1].

Recall that a lattice is modular if it satisfies schema

x ☎ y implies x ⊓ (y ⊔ z) = y ⊔ (x ⊓ z).

14



A modular latarre is a latarre whose underlying lattice is modular.
The following is a classic result about modular lattices.

Theorem 6.1. Given a modular lattice with elements a and b, the order preserving map
σ(x) = x ⊓ a from sublattice [b, a ⊔ b] to sublattice [a ⊓ b, a] is a lattice isomorphism. Its
inverse is order preserving map τ(y) = y ⊔ b. (See Birkhoff’s [4, page 13].)

Definition 6.2. LetM be a lattice. Define relation� on S = S(M) = {(c, a) ∈ M×M :
c ☎ a} as follows. Set (d, b) � (c, a) exactly when both b ⊓ c = a and b ⊔ c = d. So we
have exactly all pairs of the form (b ⊔ c, b) � (c, b ⊓ c). Over the dual lattice Md the
corresponding relation satisfies (q, p) �d (b, a) exactly when (a, b) � (p, q). Clearly
(d, b) � (c, a) implies d ☎ c and b ☎ a. If the lattice is modular, then (d, b) � (c, a)
implies that [b, d] ∼= [a, c] as sublattices, by the isomorphism σ(x) = x ⊓ c essentially
as in Theorem 6.1. Over any latarre on lattice M we have (d, b) � (c, a) implies
d _ b = (b ⊔ c) _ b = c _ b = c _ (b ⊓ c) = c _ a.

Proposition 6.3. Let M be a lattice, and S = S(M) = {(c, a) ∈ M×M : c ☎ a}.

1. Structure (S,�) is a partial order.

2. (q, p) � (b, a) if and only if (q, b) � (p, a).

3. (c, b) � (a, a) if and only if c = b ☎ a.
So by lattice duality we also have (c, c) � (b, a) if and only if c ☎ b = a.

4. (r, q) � (c, b) plus (q, p) � (b, a) implies (r, p) � (c, a).

5. If M is distributive, then partial order � admits amalgamation.
By duality, partial order � also admits amalgamation.

6. A latarre A = (M,_, ε) is arrow persistent if and only if for all a, b, c ∈ A we have
(b ⊔ c, b) � (c, a) implies b ⊓ ε ✂ c _ a.

7. A unitary latarre A = (M,_, 1) is Heyting if and only if for all a, b, c ∈ A with
c ☎ a we have (b ⊔ c, b) � (c, a) exactly when a ✂ b ✂ c _ a.

8. Let A = (M,_, 1) be a Heyting latarre, and a, c ∈ A with c ☎ a. Then (q, p) =
(((c _ a) ⊔ c), c _ a) is the largest pair such that (q, p) � (c, a).

Proof. Item 1: Reflexivity. If c ☎ a, then c ⊔ a = c and c ⊓ a = a, so (c, a) � (c, a).
Antisymmetry. Suppose (d, b) � (c, a) � (d, b). Then b ⊓ c = a plus a ⊓ d = b implies
b ☎ a ☎ b. And b⊔ c = d plus a⊔ d = c implies c ✂ d ✂ c. So (d, b) = (c, a). Transitivity.
Suppose (c3, a3) � (c2, a2) � (c1, a1). Then a3 ⊓ c1 = a3 ⊓ c2 ⊓ c1 = a2 ⊓ c1 = a1, and
a3 ⊔ c1 = a3 ⊔ a2 ⊔ c1 = a3 ⊔ c2 = c3. Thus (c3, a3) � (c1, a1).

Item 2: Both equations are equivalent to p ⊓ b = a plus p ⊔ b = q.
Item 3: From right to left is immediate from the definitions. Conversely, b ⊓ a = a

implies b ☎ a, so c = b ⊔ a = b.
Item 4: Suppose (r, q) � (c, b) and (q, p) � (b, a). Then c ⊔ p = c ⊔ b ⊔ p = c ⊔ q = r

and c ⊓ p = c ⊓ q ⊓ p = b ⊓ p = a.
Item 5: Suppose (c ⊔ x, x) � (c, a) and (c ⊔ y, y) � (c, a). By symmetry it suffices to

show that (c ⊔ x ⊔ y, x ⊔ y) � (c ⊔ x, x). Obviously (x ⊔ y) ⊔ (c ⊔ x) = c ⊔ x ⊔ y. And
(x⊔ y)⊓ (c⊔x) = ((x⊔ y)⊓ c)⊔x = a⊔a⊔x = x (where the next to last equation needs
distributivity, modularity is not sufficient).

Item 6: Suppose A is arrow persistent and (b ⊔ c, b) � (c, a). So b ⊓ c = a. By
Proposition 5.3.4 this implies b ⊓ ε ✂ c _ a. Conversely, suppose (b ⊔ c, b) � (c, a)
implies b ⊓ ε ✂ c _ a, for all a, b, c. If c ☎ a, then (c, a) � (c, a), so a ⊓ ε ✂ c _ a. Thus
A is arrow persistent.

15



Item 7: Suppose A is Heyting. By item 6 we have that (b ⊔ c, b) � (c, a) implies
a ✂ b ✂ c _ a. Suppose c ☎ a and a ✂ b ✂ c _ a. Then a = a ⊓ c ✂ b ⊓ c ✂

(c _ a) ⊓ c = a ⊓ c = a. So a = b ⊓ c and thus (b ⊔ c, b) � (c, a). Conversely, suppose
(b ⊔ c, b) � (c, a) exactly when a ✂ b ✂ c _ a, for all a, b, c with c ☎ a. Equivalently,
b ⊓ c = a exactly when a ✂ b ✂ c _ a, for all a, b, c with c ☎ a. Set c = 1 and b = a.
Then a ✂ ∇a. Set c = 1 and b = ∇a. Then ∇a = a. Thus A is Heyting.

Item 8: Combine items 5 and 7.

Given a lattice M and elements a ✂ b of M, we say that sublattice interval [a, b] =
{m : a ✂ m ✂ b} is of finite length if there is n < ω such that all linearly ordered
subsets of [a, b] are of size at most n + 1. The least such n is called the length of [a, b].
If a = b, then the length of [a, b] = [a, a] equals 0. We call b a cover of a exactly when
the length of [a, b] equals 1. Being a cover is equivalent to b ✄ a plus for all r ☎ a we
have r ☎ b or b ⊓ r = a. We call b a strong cover of a exactly when b ✄ a plus for all
r ☎ a we have r ☎ b or r = a. Elements can have at most one strong cover. An element
a is called meet irreducible if for all x, y ∈ M , if x ⊓ y = a, then x = a or y = a. A top
element is clearly meet irreducible, and is therefore called trivially meet irreducible.

Proposition 6.4. Let M be a lattice. Let S = S(M) = {(c, a) ∈ M×M : c ☎ a}.
The following are equivalent for all q ☎ p.

1. (q, p) is maximal in (S,�).

2. q ⊓ x = p implies x = p, for all x.

So if M has a top 1, then all (1, p) are maximal in (S,�).
Additionally we have the following implications for p ∈ M .

3. If r ☎ q ☎ p and (q, p) is maximal in (S,�) then (r, p) is maximal in (S,�).

4. If p has a strong cover, then p is meet irreducible.

5. p is meet irreducible if and only if (q, p) is maximal in (S,�), for all q ✄ p.

6. If (q, p) is maximal in (S,�) and q is a cover of p, then q is a strong cover of p.

Let q be a cover of p ∈ M . Then the following are equivalent.

7. q is a strong cover of p.

8. p is meet irreducible.

9. (q, p) is maximal in (S,�).

Proof. Suppose that item 1 holds, and q ⊓ x = p. Then (q ⊔ x, x) � (q, p) so, by
maximality, x = p. Conversely, suppose item 2 and (y, x) � (q, p). Then q ⊓ x = p, so
x = p and y = p ⊔ q = q.

Item 3: Suppose (q, p) is maximal and r ☎ q. If x ⊓ r = p, then x ⊓ q = p, so by
maximality x = p. By the equivalence of items 2 and 1, (r, p) is maximal.

Item 4: Let q be a strong cover of p and x ⊓ y = p. Then x ☎ q or x = p, and y ☎ q
or y = p. Thus x = p or y = p.

Item 5: Suppose p is meet irreducible and q ✄ p. Let x be such that q ⊓ x = p.
Then q = p or x = p, so x = p. By the equivalence of items 2 and 1, (q, p) is maximal.
Conversely, suppose that (q, p) is maximal in (S,�), for all q ✄ p. Let x ⊓ y = p with
x ✄ p. Then (x ⊔ y, y) � (x, p). By maximality of (x, p) we have y = p. Thus p is meet
irreducible.

Item 6: Let q be a cover of p and (q, p) be maximal. Let x ☎ p. Then x ☎ q or
q ⊓ x = p, so x ☎ q or x = p.

The implications from item 7 to item 8 to item 9 to item 7 easily follow from item 4,
5, and 6 respectively.

16



Maximality of (q, p) in (S,�) with q ✄ p does not always imply meet irreducibility of
p. For example consider the 4-element Boolean lattice on {0, a, b, 1} with a ⊓ b = 0 and
a ⊔ b = 1. Then (1, 0) is maximal in (S,�), but 0 is not meet irreducible.

Meet irreducibility of p does not imply that p has a cover. For example all elements
of the rationals Q as linearly ordered lattice are meet irreducible, but none have a cover.

Define (c, a) ≈ (d, b) as the equivalence relation on S = S(M) = {(c, a) ∈ M×M :
c ☎ a}, generated by �. So over latarres we have (c, a) ≈ (d, b) implies c _ a = d _ b.

Each properly descending finite chain cn ✄ cn−1 ✄ cn−2 ✄ . . . ✄ c0 of a lat-
tice produces a list of subintervals [ci, ci+1]. Two such chains 〈ci〉i≤n and 〈di〉i≤n are
called projectively equivalent if there is a permutation σ on {0, 1, 2, . . . , n− 1} such that
(ci+1, ci) ≈ (dσ(i)+1, dσ(i)) for all i. Projective equivalence is an equivalence relation
since the collection of permutations forms a group.

A lattice is called semimodular if for all a 6= b, if a⊔ b is a cover of both a and b, then
both a and b are covers of a ⊓ b. So modular lattices are semimodular by Theorem 6.1.
Substructures [a, b] of a semimodular lattice are again semimodular lattices.

By Zorn’s Lemma all chains of a lattice extend to maximal chains.
What follows are well-known Theorems from lattice theory, associated with the names

Dedekind, Hölder, and Jordan. See Birkhoff’s [4], or Jacobson’s [6, chapter 8].

Theorem 6.5. If all chains of a semimodular lattice are finite, then all its maximal
chains are of equal length.

Theorem 6.6. All maximal finite chains of a modular lattice are projectively equivalent.

Let M be a modular lattice whose intervals [a, b] are all of finite length. The following
is a way to construct all latarres with M as underlying lattice.

The restriction of equivalence relation (c, a) ≈ (d, b) on S = S(M) to subset C =
C(M) = {(c, a) ∈ M×M : c is a cover of a} creates a set of partitions C≈ = C≈(M).
We write (c, a)≈ for the equivalence class of (c, a) in C≈. Note that for modular lattices
we have that (q, p) � (b, a) implies b is a cover of a exactly when q is a cover of p (see
Theorem 6.1). Given the modular lattice M above, let P be a meet subsemilattice of
M with top ε, and let vC be a function from C≈ to P. We show below that each such
function vC ‘extends’ to a unique latarre arrow on M with all values (x _ y) ∈ P and,
conversely, each latarre arrow on M ‘restricts’ to one such function vC . Define binary
function x _ y on M as follows.

P1. If b is a cover of a, then set b _ a := vC((b, a)≈).

P2. Suppose b ✄ a and b is not a cover of a. There is a maximal chain b = cn ✄

cn−1 ✄ cn−2 ✄ . . . ✄ c0 = a of length n ≥ 2. So ci+1 is a cover of ci, for all
i. Set b _ a :=

d

i<n(ci+1 _ ci). Since all maximal finite chains of [a, b] are
projectively equivalent by Theorem 6.6, this is a sound definition, independent of
the choice of the maximal finite chain.

P3. If a ✂ b, then set a _ b := ε.

P4. If a and q are not compatible, then set a _ q := (a ⊔ q) _ q.

The cases P1 through P4 are disjoint and include all possibilities of pairs of elements x
and y. Each case is well-defined when the previous cases are well-defined. So x _ y is
a well-defined binary function on the modular lattice M. If x _ y is a binary function
on M such that (M,_) is a latarre, then there are subsemilattice P of M with top ε
and function vC as described above such that x _ y satisfies conditions P1 through P4.
This is the easy direction. We show below that, conversely, if an arrow x _ y satisfies
P1 through P4, then (M,_) is a latarre with all values (x _ y) ∈ P.

17



Proposition 6.7. Let M be a modular lattice with all intervals [a, b] of finite length. Let
P be a meet subsemilattice of M with top ε, and let vC be a function from C≈(M) to P.
Let binary function x _ y on M be defined as in P1 through P4. Then for all a, b, and
c we have

1. (a ⊔ b) _ b = a _ (a ⊓ b).

2. a _ b = (a ⊔ b) _ b = a _ (a ⊓ b).

3. c ☎ b ☎ a implies c _ a = (c _ b) ⊓ (b _ a).

4. (a _ b) ⊓ (b _ c) = (a ⊔ b) _ (b ⊓ c).

5. x ✂ y implies a _ x ✂ a _ y and y _ b ✂ x _ b.

6. (a _ b) ⊓ (b _ c) ✂ a _ c.

7. (a _ b) ⊓ (a _ c) = a _ (b ⊓ c).

8. (b _ a) ⊓ (c _ a) = (b ⊔ c) _ a.

9. b ✄ a implies b _ a =
d{q _ p : (q, p) ∈ C(M) and a ✂ p ✂ q ✂ b}.

Proof. Item 1: If a ✂ b, then both sides equal ε. Otherwise, the intervals [b, a ⊔ b] and
[a ⊓ b, a] are isomorphic by map σ(x) = a ⊓ x with inverse τ(y) = b ⊔ y. Suppose p, q
are such that b ✂ p ✂ q ✂ a ⊔ b. Then p ⊔ (a ⊓ q) = (p ⊔ a) ⊓ q = q, so (q, p) �
(a ⊓ q, a ⊓ p) = (σ(q), σ(p)). So σ sends each pair in an equivalence class of ≈ to a
pair in the same equivalence class, and therefore sends maximal chains of covers to
projectively equivalent maximal chains of covers. So with the definition of _ we have
(a ⊔ b) _ b = a _ (a ⊓ b).

Item 2: If a and b are incompatible, then this is immediate from item 1 and the
definition of a _ b. If a ✂ b then a ⊔ b = b and a ⊓ b = a make all implications equal to
ε. If a ☎ b then a⊔ b = a and a⊓ b = b, making all arrows ‘syntactically’ equal to a _ b.

Item 3: The cases where a = b or b = c are trivial. If c ✄ b ✄ a, then string maximal
finite chains from [a, b] and [b, c] together and apply the definitions.

Item 4: (a _ b) ⊓ (b _ c) = ((a ⊔ b) _ b) ⊓ (b _ (b ⊓ c)). Apply item 3.
Item 5: We have a ☎ a ⊓ y ☎ a ⊓ x, so a _ x = a _ (a ⊓ x) = (a _ (a ⊓

y)) ⊓ ((a ⊓ y) _ (a ⊓ x)) ✂ a _ (a ⊓ y) = a _ y. We have b ⊔ y ☎ b ⊔ x ☎ b, so
y _ b = (b ⊔ y) _ b = ((b ⊔ y) _ (b ⊔ x)) ⊓ ((b ⊔ x) _ b) ✂ (b ⊔ x) _ b = x _ b.

Item 6: By (a _ b) ⊓ (b _ c) = (a ⊔ b) _ (b ⊓ c) and item 5.
Item 7: We have a _ x = a _ (a⊓ x). Apply this for x equal to b, to c, and to b⊓ c

respectively. So we must prove that (a _ (a ⊓ b)) ⊓ (a _ (a ⊓ c)) = a _ (a ⊓ b ⊓ c). In
other words and easier to spell out, in proving the original requested equation we may
suppose without loss of generality that a ☎ b ⊔ c. With that we apply item 3 and get
(a _ b)⊓(a _ c) = (a _ (b⊔c))⊓((b⊔c) _ b)⊓((b⊔c) _ c) = (a _ (b⊔c))⊓((b⊔c) _

b) ⊓ (b _ (b ⊓ c)) = a _ (b ⊓ c).
Item 8: We have x _ a = (a⊔ x) _ a. Apply this for x equal to b, to c, and to b⊔ c

respectively. So we must prove that ((a ⊔ b) _ a) ⊓ ((a ⊔ c) _ a) = (a ⊔ b ⊔ c) _ a. In
other words and easier to spell out, in proving the original requested equation we may
suppose without loss of generality that a ✂ b ⊓ c. With that we apply item 3 and get
(b _ a) ⊓ (c _ a) = (b _ (b ⊓ c)) ⊓ (c _ (b ⊓ c)) ⊓ ((b ⊓ c) _ a) = ((b ⊔ c) _ c) ⊓ (c _

(b ⊓ c)) ⊓ ((b ⊓ c) _ a) = (b ⊔ c) _ a.
Item 9: With item 3 we have that b _ a is a lower bound of the set

{q _ p : (q, p) ∈ C(M) and a ✂ p ✂ q ✂ b}.

In the converse direction, each cover q ☎ p in interval [a, b] extends to a finite maximal
chain. Apply the definition of _.

18



Theorem 6.8. Let M be a modular lattice with all intervals [a, b] of finite length. Let
P be a meet subsemilattice of M with top ε, and let vC be a function from C≈(M) to
P. Let binary function x _ y on M be defined as in P1 through P4. Then (M,_) is a
modular latarre with (a _ b) ∈ P for all a, b ∈ M.

Proof. All latarre axioms follow from the definitions and Proposition 6.7.

In [1], Alizadeh and Joharizadeh construct what we now call CJ latarres as in Defini-
tion 5.1, on finite distributive lattices. Finite distributive lattices allow them to employ
that each equivalence class in C≈(M) has a unique largest element, see our Proposition
6.3.5. Consequently the part of their construction corresponding with our function vC
is simpler and more elegant.

7 Fixed Points and Löb

Ever since Visser’s paper [8] we have a special interest in logic and algebraic structures
with explicit fixed points. In the context of latarres we now give explicit fixed points a
further look.

Over Visser latarres we know (see [8] or [3]) that all terms t(x) have explicit fixed
point t(1), that is, t(t(1)) = t(1), exactly when all terms of the form ta(x) = x _ a
have explicit fixed point ta(1), that is, ta(ta(1)) = ta(1). Let us call an element a of a
Visser latarre a Löb element if it satisfies equation ∇a _ a = ta(ta(1)) = ta(1) = ∇a.
The name Löb is chosen because the form of this equation corresponds with the key Löb
equation of the axiomatization of provability modal logic.

Definition 7.1. We extend the notions of explicit fixed points t(1) and of Löb elements
to all weakly Visser latarres. One immediate problem is that weakly Visser latarres need
not have a largest element 1. The following are straightforward generalizations of these
concepts to all latarres. An equation t(x) = u(x) has ultimate solutions over latarre A if
for all a there are b ☎ a such that t(b) = u(b). If A has top 1, equation t(x) = u(x) has
ultimate solutions if and only if t(1) = u(1). Note that a comparison t(x) ✂ u(x) can also
have ultimate solutions over A, since it corresponds with equation t(x)⊓u(x) = t(x). We
call a term t(x) ultimately fixed or U-fixed over A if equation t(t(x)) = t(x) has ultimate
solutions over A. We call an element a a U-Löb element over A if ta(ta(x)) = ta(x)
has ultimate solutions over A, where ta(x) = x _ a. U-fixed and U-Löb are obvious
generalizations of the notions of explicit fixed point t(1) and of Löb element over unitary
latarres. From now on we only use U-fixed and U-Löb and take the liberty to re-use the
earlier expressions of explicit fixed point t(1) and of Löb element when appropriate.

A latarre is U-fixed if all its terms are U-fixed. A latarre is U-Löb if all its element are
U-Löb. Obviously U-fixed implies U-Löb. By [8] or [3], over Visser latarres we have the
converse direction that U-Löb implies U-fixed. The logical forms of these U-definitions
are unfortunately more complicated. Below we introduce simple equational definitions
of what we call fixed and Löb, and show that these are equivalent over weakly Visser
latarres to U-fixed and U-Löb.

Observe that t(x) ✂ ε implies t(t(ε) ⊓ ε) = t(t(ε)). In particular ta(ta(ε) ⊓ ε) =
ta(ta(ε)). This is partial motivation for the following definitions. A term t(x) is called
fixed over a latarre A if A satisfies schema t(t(x) ⊓ x) = t(x). An element a is called
Löb over a latarre A if A satisfies schema ta(ta(x) ⊓ x) = ta(x), where ta(x) = x _ a.
A latarre is fixed if all its terms are fixed. A latarre is Löb if all its elements are Löb.
Obviously fixed implies Löb.

An easy example: If t(x) satisfies schema x ✂ t(x) over A, then term t(x) is fixed
over A. A more involved example is contained in the following Proposition.

19



Proposition 7.2. Let t(x) be a term over a latarre A.
If x is only positive in t(x), then A satisfies schema t(t(x) ⊓ x) ✂ t(x). If x is only

negative in t(x), then A satisfies schema t(x) ✂ t(t(x) ⊓ x).
If A is weakly Visser, then A satisfies schema t(x) ✂ t(t(x) ⊓ x).
So if A is weakly Visser and x is only positive in t(x), then A satisfies schema

t(t(x) ⊓ x) = t(x), that is, t(x) is fixed over A.

Proof. The claims about positivity and negativity are immediate by Proposition 4.1. By
Theorem 5.8 weakly Visser implies meet substitution, so t(x)⊓ t(t(x)⊓x) = t(x)⊓ t(x) =
t(x).

Next come some technical Propositions which we need to identify the various notions
of fixed and Löb.

Proposition 7.3. Let t(x) be a term over a weakly Visser latarre A. Then A satisfies
schema t(t(x) ⊓ x) ⊓ (x _ t(x)) ⊓ (y _ t(x)) = t(x) ⊓ ε.

Proof. There is a term u(y, z) with y only positive in u(y, z) and z only negative in
u(y, z) such that t(x) equals u(x, x). So schema u(t(x) ⊓ x, z) ✂ u(x, z) holds. Now z is
also only formal in u(y, z). By Theorem 5.10 with n = 1, we have that A satisfies schema
(z _ w) ⊓ u(y, w) ✂ u(y, z). So

t(t(x) ⊓ x) ⊓ (x _ t(x)) ⊓ (y _ t(x)) ✂
u(x, t(x) ⊓ x) ⊓ (x _ t(x)) ⊓ (y _ t(x)) ✂
u(x, x ⊓ x) ⊓ (x _ t(x)) ⊓ (y _ t(x)) =
t(x) ⊓ (x _ t(x)) ⊓ (y _ t(x)) ✂ t(x) ⊓ ε.

The converse direction holds by Proposition 7.2 and the schema t(x)⊓ ε ✂ z _ t(x).

Proposition 7.3 immediately implies:

Proposition 7.4. Let t(x) be a term over a weakly Visser latarre A. Then A satisfies
t(t(ε) ⊓ ε) ⊓∇t(ε) = t(ε) ⊓ ε. So if A is Visser, then A satisfies t(t(1)) ⊓∇t(1) = t(1).

Proposition 7.5. Let t(x) be a term over a weakly Visser latarre A, and a be an
element of A. Define u(z) = z _ t(a). If there is b ☎ a with u(u(b) ⊓ b) = u(b), then
t(t(a) ⊓ a) ⊓ ε = t(a) ⊓ ε.

So if term t(x) satisfies schema t(x) ✂ ε over weakly Visser latarre A, and t(a) is
U-Löb over A for all a, then t(x) is fixed over A.

Proof. By Proposition 7.3 we have t(t(a)⊓a)⊓(b _ t(a)) = t(a)⊓ε. So with Proposition
5.3.4 we have t(t(a) ⊓ a) ⊓ ε ✂ (b _ t(a)) _ (t(a) ⊓ ε) ✂ ((b _ t(a)) ⊓ b) _ t(a) =
u(u(b)⊓b) = u(b) = b _ t(a). Thus t(t(a)⊓a)⊓ε = t(t(a)⊓a)⊓(b _ t(a)) = t(a)⊓ε.

Proposition 7.5 implies that Visser latarres are fixed exactly when they are Löb. In
this Section we broaden this result.

Proposition 7.6. Let a be element of a latarre A. Then a is Löb over A implies a is
U-Löb over A. If A is weakly Visser, then a is U-Löb over A implies a is Löb over A.

Proof. In the first case over a general latarre, a is Löb means schema (((x _ a) ⊓ x) _

a) = x _ a holds. In this schema we can plug in any x ☎ ε, thereby establishing ultimate
solutions for ((x _ a) _ a) = x _ a. So a is U-Löb.

The case for a weakly Visser latarre: Let t(x) be term x _ a. Suppose for all x
there is y ☎ x such that t(t(y)) = t(y). We already know by Proposition 7.2 that weakly
Visser implies schema t(x) ✂ t(t(x) ⊓ x). Given x, it suffices to show t(t(x) ⊓ x) ✂ t(x).
There is y ☎ x such that t(t(y)) = t(y). Weakly Visser implies meet substitution, so
t(x) ⊓ x = t(x ⊓ y) ⊓ x = t(y) ⊓ x. So

20



t(t(x) ⊓ x) = t(t(y) ⊓ x) = (t(y) ⊓ x) _ a =
(x _ ((t(y) ⊓ x) _ a)) ⊓ ((t(y) ⊓ x) _ a) =
(x _ (((t(y) ⊓ x) _ a) ⊓ x)) ⊓ ((t(y) ⊓ x) _ a) =
(x _ ((t(y) _ a) ⊓ x)) ⊓ ((t(y) ⊓ x) _ a) =
(x _ (t(t(y)) ⊓ x)) ⊓ ((t(y) ⊓ x) _ a) =
(x _ (t(y) ⊓ x)) ⊓ ((t(y) ⊓ x) _ a) ✂ x _ a = t(x).

Proposition 7.6 is sound justification for re-using the name Löb in our new definition.

Proposition 7.7. Let t(x) be a term over a Visser latarre A. Then t(x) is fixed over A

if and only if t(x) has explicit fixpoint t(1).

Proof. Visser latarres are unitary, so we have ε = 1. If schema t(t(x) ⊓ x) = t(x) holds,
then set x = 1 to obtain t(t(1)) = t(1). Conversely, suppose t(t(1)) = t(1). We have
x = 1 ⊓ x. So with meet substitution, t(t(x) ⊓ x) ⊓ x = t(t(1)) ⊓ x = t(1) ⊓ x ✂ t(1).
So t(t(x) ⊓ x) ✂ x _ t(1) = x _ t(x). Application of Proposition 7.3 with y = x gives
t(t(x) ⊓ x) = t(x).

For latarres with top 1 a term t(x) is U-fixed exactly when t(1) is an explicit fixed
point. So Proposition 7.7 for Visser latarres is a justification for using the name fixed in
our new definition.

Next we consider what happens when latarres are fixed or Löb. The following Propo-
sition is of interest on its own.

Proposition 7.8. Let latarre A be such that for all terms t(x) in which x occurs only
once, A satisfies schema t(t(x) ⊓ x) = t(x). Then the schema holds for all terms t(x),
that is, A is fixed.

Proof. We prove that t(x) is fixed, by induction on the number n of occurrences of x
in term t(x). The cases for n ≤ 1 are trivial or are given. Induction step: Suppose the
case holds for terms with at most n occurrences of x. Let t(x) equal term u(x, x), where
x occurs once in u(x, y), and y occurs n times in u(x, y). So we have schemas, first, by
induction, u(x, y) = u(x, u(x, y)⊓ y) and, second, u(z, u(x, y)⊓ y) = u(u(z, u(x, y)⊓ y)⊓
z, u(x, y) ⊓ y). In the second schema, set z equal to x, and apply the first schema twice
to get u(x, y) = u(x, u(x, y) ⊓ y) = u(u(x, y) ⊓ x, u(x, y) ⊓ y). Finally set y equal to x to
get t(x) = t(t(x) ⊓ x).

Proposition 7.9. A fixed latarre is U-fixed.

Proof. Let t(x) be a term over a fixed latarre. So we have schema t(t(x) ⊓ x) = t(x).
For U-fixed it suffices to find a such that t(b) ✂ b for all b ☎ a. There is a term
u(y1, y2, . . . , yn) built from x and the elements of A using at most ⊓ and ⊔, and arrow
formula terms (that is, terms of the form v _ w) r1, r2, . . . , rn such that term t(x) equals
term u(r1, r2, . . . , rn). Set v(x) equal to term u(ε, ε, . . . , ε). So schema t(x) ✂ v(x) holds,
and x is at most positive in v(x). Let a be an upper bound of all elements of A that
occur in term v(x). Then for all b ☎ a we have t(b) ✂ v(b) ✂ b, where this very last ✂

follows easily by induction on the complexity of term v(x).

Proposition 7.10. A U-fixed latarre is weakly Visser and U-Löb.

Proof. Let A be a U-fixed latarre. Then A is obviously U-Löb. Next we show weakly
Visser. Let ua(x) be term a⊓(x _ a). Then ua(ua(x)) = a⊓((a⊓(x _ a)) _ a) = a⊓ε.
So ultimate solutions of ua(ua(x)) = ua(x) imply that a is weakly arrow persistent.
Distributivity: Let vabc(x) be term a⊓((x⊓b)⊔(x⊓c)). If x ☎ b⊔c, then vabc(x) = a⊓(b⊔c)
and vabc(vabc(x)) = a ⊓ ((a ⊓ b) ⊔ (a ⊓ c)) = (a ⊓ b) ⊔ (a ⊓ c). So ultimate solutions of
vabc(vabc(x)) = vabc(x) imply distributivity.

21



Theorem 7.11. The following are equivalent for a latarre A.

1. A is U-fixed.

2. A is a weakly Visser and U-Löb.

3. A is a weakly Visser and Löb.

4. A is fixed.

Proof. Item 1 implies item 2 by Proposition 7.10.
Item 2 implies item 3 by Proposition 7.6.
Suppose item 3. To prove: Item 4. By Proposition 7.8 it suffices to show schema

t(t(x)⊓x) = t(x) for terms t(x) in which x occurs once. If x is positive in t(x), then we are
done by Proposition 7.2. Otherwise, suppose x is negative in t(x). So x is formal in t(x).
By Proposition 7.2 (or Proposition 4.1), it suffices to show that t(t(x) ⊓ x) ✂ t(x). Let
u(x) be the largest arrow subterm of t(x) which contains x. Without loss of generality
we may suppose that there is a term v(y) built from constants and variables but only one
single occurrence of y using at most ⊓ and ⊔, such that we have schema t(x) = v(u(x)),
and x is negative in u(x). We have schema u(x) ✂ ε. So by Propositions 7.5 and 7.6 we
have schema u(u(x) ⊓ x) = u(x). To extend the fixedness of u(x) to fixedness of t(x),
it suffices to show that the collection of terms w(x) in which x is negative and which
satisfy schema w(w(x) ⊓ x) = w(x), is closed under taking ⊓ and ⊔ with constants.
Let r(x) = w(x) ⊓ a with w(w(x) ⊓ x) = w(x). Then r(r(x) ⊓ x) = w(r(x) ⊓ x) ⊓ a =
w(w(x) ⊓ a ⊓ x) ⊓ a = w(w(x) ⊓ x) ⊓ a = w(x) ⊓ a = r(x). Let s(x) = w(x) ⊔ a with
w(w(x) ⊓ x) = w(x). Then s(s(x) ⊓ x) = w(s(x) ⊓ x) ⊔ a = w((w(x) ⊔ a) ⊓ x) ⊔ a ✂

w(w(x)⊓x)⊔a = w(x)⊔a = s(x). So the collection is closed as wished, thus t(x) is also
fixed.

Item 4 implies item 1 by Proposition 7.9.

Some of the proofs of the Propositions and Theorem so far in this Section imply
generalizations. We end this Section with one of these.

Proposition 7.12. The following are equivalent for a latarre A.

1. A is weakly Visser, and all elements of the form a _ b are Löb.

2. A is fixed.

Proof. With Theorem 7.11 it suffices to show that item 1 implies item 2.
So suppose item 1. The proof is almost identical to the proof of 7.11.4 from 7.11.3.

Follow that proof to the sentence: We have schema u(x) ✂ ε. Then observe that by
supposition, u(a) is Löb for all a. Then continue the earlier proof: So by Propositions
7.5 and 7.6 we have schema u(u(x) ⊓ x) = u(x). Then continue to the end of the earlier
proof.

An element that can be written in the form a _ b is called an arrow element, or
an arrow element of the 1st kind. Given an arrow element t of the nth kind, we call an
element a _ t an arrow element of the (n+1)th kind. An arrow element of the nth kind
is also an arrow element of the mth kind, for all n ≥ m ≥ 1.

Theorem 7.13. The following are equivalent for a latarre A.

1. A is weakly Visser, and there is n ≥ 1 such that all arrow elements of the nth kind
are Löb.

2. A is fixed.

22



Proof. Obviously item 2 implies item 1, see Proposition 7.12.
Suppose item 1. To prove: item 2. We complete the proof by induction on n. The

case for n = 1 holds by Proposition 7.12. Assume the equivalence holds for n, and all
arrow elements of the (n+1)th kind are Löb. It suffices to show that all arrow elements
of the nth kind are Löb. Let c be an arrow element of the nth kind. Let t(x) be term
x _ c, and a be an arbitrary element. Then t(a) is an arrow element of the (n + 1)th

kind. By assumption term t(a) is Löb. Since a is arbitrary, by Propositions 7.5 and 7.6
term t(x) is fixed, that is, c is Löb.

References

[1] Majid Alizadeh and Nima Joharizadeh Counting weak Heyting algebras on
finite distributive lattices, Logic Journal of the Interest Group in Pure and Applied
Logics 23, no. 2 (2015), 247–258.

[2] Majid Alizadeh, Mohammad Ardeshir, and Wim Ruitenburg. Boolean Al-
gebras in Visser Algebras, Notre Dame Journal of Formal Logic 57 (2016), 141–150.

[3] Mohammad Ardeshir and Wim Ruitenburg. Basic propositional calculus I,
Mathematical Logic Quarterly 44 (1998), 317–343.

[4] Garrett Birkhoff. Lattice Theory, American Mathematical Society Collo-
quium Publications Vol. 25, Third edition, third printing, American Mathematical
Society, Providence RI, 1979.

[5] Sergio Celani and Ramon Jansana. Bounded distributive lattices with strict
implication, Mathematical Logic Quarterly 51 (2005), 219–246.

[6] Nathan Jacobson. Basic Algebra I, W.H. Freeman and Company, 1974.

[7] Jorge Picado and Aleš Pultr. Frames and Locales, Topology without

points, Frontiers in Mathematics, Birkhäuser, 2012.

[8] Albert Visser. A propositional logic with explicit fixed points, Studia Logica 40

(1981), 155–175.

23


