Latarres on Complete Lattices

WIM RUITENBURG Marquette University Milwaukee, WI 53201, USA e-mail: wimr@mscs.mu.edu

Lots of cooperation with

MOHAMMAD ARDESHIR Sharif University of Technology Tehran, Iran e-mail: mardeshir@sharif.edu

1 Introduction

Latarres are the end result of a series of generalizations. Our process follows from earlier mathematical results obtained about Boolean algebras, Heyting algebras, Visser algebras (see [1], [2], and [4]), and what we call CJ algebras, after Celani and Jansana (weakly Heyting algebras in [3]).

2 What is a Latarre?

2.1 Informal Definition

A latarre is a LATtice with an ARRow. The essential parts of its language consist of three binary operators $(\Box, \sqcup, \rightarrow)$. With restriction to (\Box, \sqcup) a latarre is a lattice with meet \Box and join \sqcup . For the arrow we have the additional 'natural' schemas

$$\begin{aligned} x &\to y = (x \sqcup y) \to y. \\ x \to y = x \to (x \sqcap y). \\ y &\leq z \text{ implies } x \to y \leq x \to z. \\ y &\leq z \text{ implies } z \to x \leq y \to x. \\ (x \to y) \sqcap (y \to z) \leq x \to z. \end{aligned}$$

where \leq is the usual order definable by $x \leq y$ exactly when $x \sqcap y = x$.

2.2 Formal Definition

For practical reasons we extend our language to $(\Box, \sqcup, \rightarrow, \varepsilon)$ by adding a constant ε to the three binary operators mentioned above. A *latarre* is a structure satisfying the universal algebra schemas of a lattice with meet \Box and join \sqcup , plus

N1.
$$x \to y = (x \sqcup y) \to y$$
.
N2. $x \to y = x \to (x \sqcap y)$.
N3. $x \to (x \sqcap y \sqcap z) \leq x \to (x \sqcap y)$.
N4. $y \to (y \sqcap z) \leq (x \sqcap y) \to (x \sqcap y \sqcap z)$.
N5. $(x \to (x \sqcap y)) \sqcap ((x \sqcap y) \to (x \sqcap y \sqcap z)) \leq x \to (x \sqcap y \sqcap z)$.
N6. $\varepsilon \to \varepsilon = \varepsilon$.

Element ε is an important convenience, that is, ε with N6 is uniquely definable over the subsystem without N6.

Proposition 2.1. Latarres satisfy schemas

1.
$$y \leq z$$
 implies $x \rightarrow y \leq x \rightarrow z$.
2. $y \leq z$ implies $z \rightarrow x \leq y \rightarrow x$.
3. $(x \rightarrow y) \sqcap (y \rightarrow z) \leq x \rightarrow z$.
4. $x \rightarrow y \leq z \rightarrow z$.
5. $x \rightarrow y \leq \varepsilon$.
6. $x \rightarrow x = \varepsilon$.
7. $x \leq y$ implies $x \rightarrow y = \varepsilon$.
8. $x \rightarrow y = \varepsilon$ implies $z \rightarrow x \leq z \rightarrow y$ and $y \rightarrow z \leq x \rightarrow z$

Section 3 has trivial examples of latar res which are neither distributive nor have a largest element. So ε need not be top. **Proposition 2.2.** Latarres satisfy schemas

1.
$$x \rightarrow (y \sqcap z) = (x \rightarrow y) \sqcap (x \rightarrow z).$$

2. $(y \sqcup z) \rightarrow x = (y \rightarrow x) \sqcap (z \rightarrow x).$
3. $z \rightarrow x \trianglelefteq (x \rightarrow y) \sqcap (y \rightarrow z)$ implies $(z \rightarrow x) = (z \rightarrow y) \sqcap (y \rightarrow x).$ In particular, $z \trianglerighteq y \trianglerighteq x$ implies $(z \rightarrow x) = (z \rightarrow y) \sqcap (y \rightarrow x).$
4. $(x \rightarrow y) \sqcap (y \rightarrow z) = (x \sqcup y) \rightarrow (y \sqcap z).$
5. $y \rightarrow z = \varepsilon$ implies $(x \sqcup y) \rightarrow z = x \rightarrow (x \sqcap z) = x \rightarrow z.$
6. $z \rightarrow x = \varepsilon$ implies $z \rightarrow (x \sqcap y) = (z \sqcup y) \rightarrow y = z \rightarrow y.$
7. $y \rightarrow z \trianglelefteq (x \sqcap y) \rightarrow (x \sqcap z).$
8. $(y \rightarrow x) \sqcap (y \rightarrow z) = (y \rightarrow x) \sqcap ((x \sqcap y) \rightarrow (x \sqcap z)).$

Let a, b, and c be elements of a latarre \mathfrak{A} . Then

- 1. $c \sqcap \varepsilon = c \sqcap (b \twoheadrightarrow a)$ if and only if \mathfrak{A} satisfies schema $c \sqcap ((a \sqcap b) \twoheadrightarrow (a \sqcap x)) = c \sqcap (b \twoheadrightarrow x).$
- 2. A satisfies schema $a \sqcap \varepsilon \leq z \twoheadrightarrow a$ if and only if A satisfies schema $a \sqcap ((a \sqcap x) \twoheadrightarrow (a \sqcap y)) = a \sqcap (x \twoheadrightarrow y).$

We inductively define $\nabla^n x$ for all n by $\nabla^0 x = x$ and $\nabla^{n+1} x = \varepsilon \rightarrow \nabla^n x$.

Proposition 2.3. Latarres satisfy schemas

1.
$$\nabla^n(x \sqcap y) = \nabla^n x \sqcap \nabla^n y.$$

3 Examples of Latarres

One collection of trivial latarres is the following. Start with any lattice \mathfrak{M} and any element m of \mathfrak{M} . Set $x \to y = m$ for all elements x and y of \mathfrak{M} . This defines a 'trivial' latarre with $\varepsilon = m$ and \mathfrak{M} as underlying lattice.

A latarre is called *unitary* if the lattice has a top 1 and $\varepsilon = 1$. A latarre is called *arrow persistent* if it satisfies schema $x \sqcap \varepsilon \trianglelefteq y \twoheadrightarrow x$. A latarre is called *Heyting* if it satisfies schema $x = \nabla x$. A latarre is called *Boolean* if it satisfies schema $(x \multimap (x \sqcap y)) \twoheadrightarrow (x \sqcap y) = x$. A latarre is unitary arrow persistent exactly when it satisfies schema $x \trianglelefteq \nabla x$. So Heyting latarres are unitary arrow persistent. Boolean latarres are Heyting.

A latarre is called *almost-complete* if for each subset S which contains an element, $\bigsqcup S$ exists or, equivalently, if for each subset S with a lower bound, $\bigsqcup S$ exists. So complete implies almost-complete. A *frame* (or a complete Heyting algebra or a locale) satisfies $m \sqcap \bigsqcup S = \bigsqcup \{m \sqcap s : s \in S\}$, for all sets of elements $\{m\} \cup S$. On a frame \mathfrak{M} we can define an arrow $x \twoheadrightarrow y = \bigsqcup \{z : x \sqcap z \leq y\}$. The resulting structure $(\mathfrak{M}, \rightarrow, 1, 0)$ is a frame. Each filter F on frame \mathfrak{M} is the domain of an almost-complete Heyting latarre $(\mathfrak{F}, \rightarrow, 1)$. Filters on a Boolean algebra \mathfrak{B} are exactly the upward closed (Boolean) sublatarres of \mathfrak{B} .

Filters on a Heyting algebra \mathfrak{C} are exactly the upward closed (Heyting) sublatarres of \mathfrak{C} .

Define a unitary latarre on lattice N_5 as follows. In the diagram of N_5 below, labels x, y, and z mean that we set $1 \rightarrow b = y$, set $b \rightarrow a = z$, and so on. The letters x, y and z are values to be chosen freely from the domain $\{0, a, b, p, 1\}$ with the only restrictions that $x \leq z$ and $y \leq z$.

The properties of unitary latarres allow us to uniquely extend the arrow by $p \rightarrow p = 1$ and $1 \rightarrow a = (1 \rightarrow b) \sqcap (b \rightarrow a) = y \sqcap z = y$ and $a \rightarrow p = a \rightarrow a \sqcap p = a \rightarrow 0 = x$, and so on. A function $f : \mathfrak{A} \to \mathfrak{B}$ between latarres is called a latarre (homo)morphism if f preserves the defining operations of \sqcap, \sqcup , \rightarrow , and ε . Latarres are closed under submodels, products, and (homomorphic) images.

Proposition 3.1. Let $\mathfrak{A} = (\mathfrak{M}, \sqcup, \twoheadrightarrow, \varepsilon)$ be a latarre and $f : \mathfrak{M} \to \mathfrak{M}$ be a meet semilattice endomorphism. Define $\mathfrak{A}_f = (\mathfrak{M}, \sqcup, \twoheadrightarrow_f, f(\varepsilon))$ by $a \twoheadrightarrow_f b = f(a \twoheadrightarrow b)$. Then \mathfrak{A}_f is a latarre.

Proposition 3.2. Let $\mathfrak{A} = (\mathfrak{N}, \rightarrow, \varepsilon)$ be a latarre and $g : \mathfrak{N} \rightarrow \mathfrak{N}$ be a lattice endomorphism. Define $\mathfrak{A}^g = (\mathfrak{N}, \rightarrow^g, \varepsilon)$ by $a \rightarrow^g b = g(a) \rightarrow g(b)$. Then \mathfrak{A}^g is a latarre.

Let $g: A \to A$ be a continuous function on a topological space $\mathcal{O}(A)$. Inverse image map $h = g^{-1} : \mathcal{O}(A) \to \mathcal{O}(A)$ is a meet semilattice morphism on the meet semilattice part \mathfrak{N} of the frame $\mathcal{O}(A)$. \mathfrak{N} is the meet semilattice part of the corresponding complete Heyting latarre $\mathfrak{C} = (\mathfrak{N}, \sqcup, \twoheadrightarrow, A)$. By Proposition 3.1 we get a new latarre \mathfrak{C}_h from \mathfrak{C} by redefining $\varepsilon_h = g^{-1}(\varepsilon)$ and $U \twoheadrightarrow_h V = h(U \twoheadrightarrow V) = g^{-1}(U \twoheadrightarrow V) = \bigcup\{g^{-1}(W) : W \cap U \subseteq V\}$. Map $h = g^{-1}$ is also a lattice morphism on (\mathfrak{N}, \sqcup) . So by Proposition 3.2 we get another new latarre \mathfrak{C}^h from \mathfrak{C} by redefining $U \twoheadrightarrow^h V = g^{-1}(U) \twoheadrightarrow g^{-1}(V) = \bigcup\{W : g(W \cap g^{-1}(U)) \subseteq V\}$. **Proposition 3.3.** Let $f : \mathfrak{M} \to \mathfrak{N}$ be a lattice morphism, and $g : \mathfrak{N} \to \mathfrak{M}$ be map which preserves meet \Box . Let $\mathfrak{B} = (\mathfrak{N}, \to, \varepsilon)$ be a latarre. Define ε_m and \twoheadrightarrow_m on \mathfrak{M} by $\varepsilon_m = g(\varepsilon)$ and $x \to_m y = g(f(x) \to f(y))$. Then $\mathfrak{A} = (\mathfrak{M}, \to_m, \varepsilon_m)$ is a latarre.

Map $f : \mathfrak{A} \to \mathfrak{B}$ of Proposition 3.3 need not be a latarre morphism. By Proposition 3.1 we have a latarre $\mathfrak{B}_{fg} = (\mathfrak{N}, \twoheadrightarrow_{fg}, fg(\varepsilon))$ with $x \twoheadrightarrow_{fg} y = fg(x \twoheadrightarrow y)$. Map $f : \mathfrak{A} \to \mathfrak{B}_{fg}$ is a latarre morphism.

Suppose map $g : \mathfrak{N} \to \mathfrak{M}$ of Proposition 3.3 is a lattice morphism. Map $g : \mathfrak{B} \to \mathfrak{A}$ need not be a latarre morphism. By Proposition 3.2 we have a latarre $\mathfrak{B}^{fg} = (\mathfrak{N}, \twoheadrightarrow^{fg}, \varepsilon)$ with $x \twoheadrightarrow^{fg} y = fg(x) \twoheadrightarrow fg(y)$. Map $g : \mathfrak{B}^{fg} \to \mathfrak{A}$ is a latarre morphism.

Proposition 3.4. Let $\mathfrak{A}_1 = (\mathfrak{M}, \varepsilon_1 \rightarrow 1)$ and $\mathfrak{A}_2 = (\mathfrak{M}, \varepsilon_2, \rightarrow 2)$ be latarres on the same lattice \mathfrak{M} . Define $\mathfrak{A} = (\mathfrak{M}, \varepsilon, \rightarrow)$ by $\varepsilon = \varepsilon_1 \sqcap \varepsilon_2$ and $x \rightarrow y = (x \rightarrow 1 y) \sqcap (x \rightarrow 2 y)$. Then \mathfrak{A} is a latarre.

Proposition 3.4 can be strengthened for complete lattices, where we get a new arrow that looks like $x \to_S y = \prod \{x \to_s y : s \in S\}$, and $\varepsilon_S = \prod \{\varepsilon_s : s \in S\}$. Let R be a commutative ring. Its collection of ideals forms a complete lattice ordered by set inclusion. Let \mathfrak{M} be the complete lattice of ideals, with $I \sqcap J = I \cap J$ for all ideals I and J. Lattice \mathfrak{M} need not be distributive. The set $\sqrt{I} = \{r \in R :$ $r^n \in I$ for some $n\}$ is the least radical ideal containing I. Given ideals I and J, the set $J : I = \{r \in R : rI \subseteq J\}$ is an ideal. We construct a unitary complete latarre \mathfrak{A} on lattice \mathfrak{M} as follows. Set $I \to J = \sqrt{J : I}$ and $\varepsilon = R$. We have a unitary latarre $\mathfrak{A} = (\mathfrak{M}, \rightarrow, R)$ with $I \sqcap (I \rightarrow J) = I \sqcap \sqrt{J}$.

Let $\mathcal{O}(X)$ be a T_0 topological space. So we have a latarre $\mathfrak{A} = (\mathcal{O}(X), \rightarrow, X)$. Define operator $j : \mathcal{O}(X) \rightarrow \mathcal{O}(X)$ by

 $ju = \bigsqcup \{ u \cup \{x\} : u \cup \{x\} \text{ is open} \}.$

Define $x \to_j y = j(x \to y)$ and get a new latarre $(\mathcal{O}(X), \to_j X)$, where $\nabla_j x = X \to_j x = jx$. Even in the case of $\mathcal{O}(\mathbb{R})$ there are u with $j^{n+1}u \neq j^n u$ for all n.

The above example generalizes to almost-complete frames. Let $\mathfrak{M} = (M, \Box, \sqcup)$ be an almost-complete lattice. Define v covers or equals u, written $u \leq_1 v$, by

 $u \leq_1 v \leftrightarrow (u \leq v \land \forall t (u \leq t \leq v \rightarrow (u = t \lor t = v)))$. Over a T_0 space $\mathcal{O}(X)$ this means $u \leq_1 v$ exactly when there is $\xi \in X$ with $u \leq v \leq u \cup \{\xi\}$. Define operator $j : \mathfrak{M} \to \mathfrak{M}$ by

$$jx = \bigsqcup \{ u : x \leq_1 u \}.$$

4 General Substitution Rules

With each latarre \mathfrak{A} we associate a predicate logic language $\mathcal{L}(\mathfrak{A})$. We may write t(x) even if term t(x) has other variables besides x. Given a term t(x) of $\mathcal{L}(\mathfrak{A})$, we define positivity and negativity of occurrences of x in t(x) in the usual inductive way.

Proposition 4.1. Let t(x) be a term over a latarre \mathfrak{A} . If x is only positive in t(x), then $x \leq y$ implies $t(x) \leq t(y)$. If x is only negative in t(x), then $x \leq y$ implies $t(y) \leq t(x)$.

An x occurs at depth $n \ge 0$ in term t(x) if x occurs n levels deep inside implication subformulas of implication subformulas and so on. So x occurs at depth 2 in $(y \rightarrow (w \sqcap (x \sqcup v))) \rightarrow z$, and x occurs at depth n in $\nabla^n x$. The x occurs informally if depth n = 0, otherwise x occurs formally.

Proposition 4.2. Let t(x) be a term over a latarre \mathfrak{A} and $n \ge 0$ be such that x only occurs at depth n in t(x). If x is only positive in t(x), then \mathfrak{A} satisfies schema $\nabla^n(x \twoheadrightarrow y) \le t(x) \twoheadrightarrow t(y)$. If x is only negative in t(x), then \mathfrak{A} satisfies schema $\nabla^n(x \multimap y) \le t(x) \longrightarrow t(y)$.

Proposition 4.3. Let t(x) be a term built without join \sqcup over a latarre \mathfrak{A} , and $n \ge 1$ be such that x only occurs at depth nin t(x). If x is only positive in t(x), then \mathfrak{A} satisfies schema $\nabla^{n-1}(x \twoheadrightarrow y) \sqcap t(x) \le t(y)$. If x is only negative in t(x), then \mathfrak{A} satisfies schema $\nabla^{n-1}(x \twoheadrightarrow y) \sqcap t(y) \le t(x)$.

In Proposition 4.3 the exclusion of \sqcup is essential.

Proposition 4.4. Let t(x) be a term over a latarre \mathfrak{A} in which x occurs only at depths at least n in t(x), for some $n \ge 1$. Let $a, b \in A$ be such that $\nabla^{n-1}(a \rightarrow b) = \varepsilon$. If x is only positive in t(x), then $t(a) \le t(b)$. If x is only negative in t(x), then $t(b) \le t(a)$.

Write $x \nleftrightarrow y$ as short for $(x \multimap y) \sqcap (y \multimap x)$. If x is only formal in t(x), then $a \nleftrightarrow b = \varepsilon$ implies t(a) = t(b).

Proposition 4.5. Let t(x) be a term over a latarre \mathfrak{A} , and $a, b \in A$ are such that $a \rightarrow b = \varepsilon$. If x is only positive in t(x), then $t(a) \rightarrow t(b) = \varepsilon$. If x is only negative in t(x), then $t(b) \rightarrow t(a) = \varepsilon$.

Given a latarre \mathfrak{A} , define equivalence relation $x \sim y$ by $x \nleftrightarrow y = \varepsilon$. We write $a^{(1)}$ or a' for the equivalence class of a, and $A^{(1)}$ or A' for the collection of equivalence classes. Relation $x \sim y$ a congruence. On A' define the following latarre. If $a \nleftrightarrow b = \varepsilon$, then $t(a) \nleftrightarrow t(b) = \varepsilon$ for all terms t(x). The following are well-defined on A': Define $x' \sqcap' y' = (x \sqcap y)'$ and $x' \sqcup' y' = (x \sqcup y)'$ and $x' \to y' = (x \to y)'$. With these, $\mathfrak{A}' = (A', \sqcap', \sqcup', \to', \varepsilon')$ is a latarre. The map $x \mapsto x'$ is an onto latarre morphism from \mathfrak{A} onto \mathfrak{A}' .

Repeat this construction and form $\mathfrak{A}'' = \mathfrak{A}^{(2)}$ by defining $x' \sim y'$ on \mathfrak{A}' by $(x \nleftrightarrow y)' = x' \nleftrightarrow' y' = \varepsilon'$ or, equivalently, by $(x \nleftrightarrow y) \sim \varepsilon$, that is, $(x \nleftrightarrow y) \nleftrightarrow \varepsilon = \varepsilon$. Continuing in this way, we get a chain

 $\mathfrak{A} = \mathfrak{A}^{(0)} \to \mathfrak{A}^{(1)} \to \mathfrak{A}^{(2)} \to \mathfrak{A}^{(3)} \to \dots$

with for all $a, b \in A$ and $n \ge 1$ we have $a^{(n)} = b^{(n)}$ in $A^{(n)}$ exactly when $\nabla^{n-1}(a \nleftrightarrow b) = \varepsilon$.

5 Visser Latarres and Substitution

We establish a close connection between weakly Visser latarres and (relative) meet substitution.

An element a of a latarre is called *arrow persistent* if it satisfies schema $a \sqcap \varepsilon \trianglelefteq y \twoheadrightarrow a$. Element a is called *unitary arrow persistent* if it satisfies schema $a \trianglelefteq y \twoheadrightarrow a$. A weakly Visser latarre is a distributive latarre satisfying the schema $x \sqcap \varepsilon \trianglelefteq y \twoheadrightarrow x$ of arrow persistence. A Visser latarre is a unitary weakly Visser latarre.

So a Visser latarre is a distributive latarre satisfying the schema $x \leq \nabla x$ of unitary arrow persistence. Hence Heyting latarres are Visser latarres.

Proposition 5.1. The following are equivalent for an element a of a latarre.

1. a is arrow persistent.

2. $a \sqcap (a \twoheadrightarrow y) \leq z \twoheadrightarrow y$, for all y and z.

3. $(a \sqcap y \twoheadrightarrow z) = \varepsilon$ implies $a \sqcap \varepsilon \leq y \twoheadrightarrow z$, for all y and z.

4. $a \sqcap y \leq z$ implies $a \sqcap \varepsilon \leq y \Rightarrow z$, for all y and z.

Given a latarre \mathfrak{A} and element a, we construct a latarre on the subset $\{x \in A : x \leq a\}$ as follows. Set

$$\begin{aligned} \varepsilon_a &= \varepsilon \sqcap a, \\ x \sqcap_a y &= x \sqcap y, \\ x \twoheadrightarrow_a y &= a \sqcap (x \twoheadrightarrow y), \quad \text{and} \\ x \sqcup_a y &= x \sqcup y. \end{aligned}$$

The resulting structure \mathfrak{A}_a is a latarre. If $a \leq \varepsilon$, then \mathfrak{A}_a is unitary. If \mathfrak{A} is unitary, arrow persistent, Visser, Heyting, or Boolean, then so is \mathfrak{A}_a .

The function $\pi_a(x) = a \sqcap x$ is an idempotent map from \mathfrak{A} onto \mathfrak{A}_a . In general π_a is not a latarre morphism. Below we establish precisely when π_a is a morphism.

Given a term t(x) and element a of latarre \mathfrak{A} , we say that t(x) admits meet substitution over (\mathfrak{A}, a) if \mathfrak{A} satisfies schema

 $a \sqcap x = a \sqcap y$ implies $a \sqcap t(x) = a \sqcap t(y)$.

Equivalently, (\mathfrak{A}, a) satisfies schema

 $a \sqcap t(x) = a \sqcap t(a \sqcap x).$

We write $T(\mathfrak{A}, a)$ for the collection of terms over \mathfrak{A} that admit meet substitution over (\mathfrak{A}, a) . We define \mathfrak{A} admits meet substitution if $T(\mathfrak{A}, a)$ includes all terms for all $a \in A$.

Proposition 5.2. Let a be an element of latarre \mathfrak{A} . Then the collection $T(\mathfrak{A}, a)$ contains all terms without x, the term x itself, and is closed under \sqcap and under composition. Additionally:

- 1. \mathfrak{A} satisfies schema $a \sqcap \varepsilon \leq x \twoheadrightarrow a$ if and only if $T(\mathfrak{A}, a)$ is closed under \twoheadrightarrow .
- 2. \mathfrak{A} satisfies schema $a \sqcap (x \sqcup y) = (a \sqcap x) \sqcup (a \sqcap y)$ if and only if $T(\mathfrak{A}, a)$ is closed under \sqcup .

As a Corollary we get:

Theorem 5.3. The following are equivalent for a later \mathfrak{A} .

- 1. \mathfrak{A} is weakly Visser.
- 2. For all elements a of \mathfrak{A} the map $\pi_a : \mathfrak{A} \to \mathfrak{A}_a$ is a latarre morphism.
- 3. \mathfrak{A} admits meet substitution.

6 Fixed Points and Löb

Over Visser latarres all terms t(x) have explicit fixed point t(1), that is, t(t(1)) = t(1), exactly when all terms of the form $t_a(x) = x \rightarrow a$ have explicit fixed point $t_a(1)$, that is, $t_a(t_a(1)) = t_a(1)$.

An equation t(x) = u(x) has ultimate solutions over latarre \mathfrak{A} if for all a there are $b \geq a$ such that t(b) = u(b). We call a term t(x) ultimately fixed or U-fixed over \mathfrak{A} if equation t(t(x)) = t(x) has ultimate solutions over \mathfrak{A} . We call an element $a = U-L\ddot{o}b$ element over \mathfrak{A} if $t_a(t_a(x)) = t_a(x)$ has ultimate solutions over \mathfrak{A} , where $t_a(x) = x \rightarrow a$.

A latarre is U-fixed if all its terms are U-fixed. A latarre is U- $L\ddot{o}b$ if all its element are U- $L\ddot{o}b$. U-fixed implies U- $L\ddot{o}b$. Visser latarres add the converse direction that U- $L\ddot{o}b$ implies U-fixed.

A term t(x) is called *fixed* over a latarre \mathfrak{A} if \mathfrak{A} satisfies schema $t(t(x) \sqcap x) = t(x)$. An element *a* is called *Löb* over a latarre \mathfrak{A} if \mathfrak{A} satisfies schema $t_a(t_a(x) \sqcap x) = t_a(x)$, where $t_a(x) = x \rightarrow a$. A latarre is *fixed* if all its terms are fixed. A latarre is *Löb* if all its elements are Löb. Fixed implies Löb.

Obviously schema $x \leq t(x)$ over \mathfrak{A} implies that t(x) is fixed over \mathfrak{A} .

Theorem 6.1. The following are equivalent for a later \mathfrak{A} .

- 1. \mathfrak{A} is U-fixed.
- 2. A is a weakly Visser and U-Löb.
- 3. A is a weakly Visser and Löb.
- 4. \mathfrak{A} is fixed.

An element that can be written in the form $a \rightarrow b$ is called an arrow element, or an arrow element of the 1st kind. Given an arrow element t of the n^{th} kind, we call an element $a \rightarrow t$ an arrow element of the $(n + 1)^{\text{th}}$ kind.

Theorem 6.2. The following are equivalent for a later \mathfrak{A} .

- 1. \mathfrak{A} is weakly Visser, and there is $n \geq 1$ such that all arrow elements of the n^{th} kind are Löb.
- 2. A is fixed.

7 Almost-Complete Latarres

Another source of interest involves almost-complete lattices with an operator. In early cases this mostly involved frames \mathfrak{M} with a map $j: \mathfrak{M} \to \mathfrak{M}$ satisfying the schemas

 $x \leq jx$ (increasing) and $j(x \sqcap y) = jx \sqcap jy$ (multiplicative).

An operator satisfying these conditions we dub a *nub*. With this terminology, j is a *nucleus* if j is an idempotent nub, that is, if j satisfies the extra schema

jjx = jx (idempotent).

These definitions apply to all latarres. The following is a special case for current purposes.

Proposition 7.1. Let j be a nub on a Visser latarre \mathfrak{M} . Define $x \rightarrow_j y = j(x \rightarrow y)$. Then \mathfrak{M} with new arrow \rightarrow_j forms a Visser latarre.

Theorem 7.2. Let j be a nub on an almost-complete frame \mathfrak{M} . Then there is a map w on \mathfrak{M} satisfying

- w is a nucleus.
- w is least fixed point operator for j, that is, we have schemas jwx = wx, and $jy = y \ge x$ implies $y \ge wx$.

Let $e: \mathfrak{N} \to \mathfrak{M}$ be the equalizer of j and $id: \mathfrak{M} \to \mathfrak{M}$. Then

- \mathfrak{N} is an almost-complete frame (and the image of w).
- $w = e\pi$ for a unique $\pi : \mathfrak{M} \to \mathfrak{N}$.

For each $n \in \mathfrak{N}$ the inverse image structure $\pi^{-1}(\{n\}) = \mathfrak{M}_n$ is Visser and Löb, that is, is a fixed (point) latarre.

The lattice of $\pi^{-1}(\{n\}) = \mathfrak{M}_n$ is an almost-complete frame, but usually not a frame.

References

- MAJID ALIZADEH, MOHAMMAD ARDESHIR, AND WIM RUITENBURG. Boolean Algebras in Visser Algebras, Notre Dame Journal of Formal Logic 57 (2016), 141–150.
- [2] MOHAMMAD ARDESHIR AND WIM RUITENBURG. Basic propositional calculus I, Mathematical Logic Quarterly 44 (1998), 317–343.
- [3] SERGIO CELANI AND RAMON JANSANA. Bounded distributive lattices with strict implication, Mathematical Logic Quarterly 51 (2005), 219–246.
- [4] ALBERT VISSER. A propositional logic with explicit fixed points, Studia Logica **40** (1981), 155–175.