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We develop a new predicate logic for constructive
mathematics simultaneously with a matching new proof
interpretation.

1 Constructive Mathematics

We give a brief ‘historical’ overview of the major schools
of constructive mathematics. Many quotes from the lit-
erature imply that the insights that result in our re-
interpretation, have a significant precursor in earlier in-
sights.

Among constructivists it is broadly understood that
constructive mathematics has precedence over construc-
tive logic.



1.1 Brouwer

The first fully constructive mathematics and philosophy
started with L.E.J. Brouwer’s 1907 PhD thesis.

Brouwer condemned a logical foundation of mathe-
matics independent of a priori human mental concepts.
For otherwise one builds a linguistic structure definitely
distinct from mathematics proper.

Brouwer’s PhD student A. Heyting wrote his 1925
PhD thesis on an intuitionistic treatment of axiomatic
projective geometry.

Brouwer’s intuitionism is not consistent with classical
mathematics.



1.2 Markov

In 2006 Boris A. Kushner wrote

After World War II Markov’s interests turned
to axiomatic set theory, mathematical logic,
and the foundations of mathematics. He founded
the Russian school of constructive mathemat-
ics in the late 1940s and early 1950s.

A.A. Markov’s main work is strongly influenced by the
theory of and philosophy about the general recursive
functions of the 1930s.

Some Markov constructivists contemplate broader pos-
sibilities. In 2016 Vladik Kreinovich offers some Main
Challenges, including:

• The need to extend constructive mathematics to
more complex mathematical objects.

• To be useful for data processing, algorithms must
be able to handle possibly non-constructive data.

Markov’s and Brouwer’s do not include one another.
Markov’s constructivism is not consistent with clas-

sical mathematics.



1.3 Bishop

In 1967 Errett Bishop writes:

Our program is simple: to give numerical
meaning to as much as possible of classical
abstract analysis. Our motivation is the well-
known scandal, exposed by Brouwer (and oth-
ers) in great detail, that classical mathemat-
ics is deficient in numerical meaning.

Bishop’s constructivism is consistent with classical
mathematics, and appears contained in Brouwer’s and
Markov’s.



1.4 Topos Theory

A constructive ‘school’ need not be founded by a single
person who expounds a constructive point of view.

In the early 1960s appeared early theorems about cat-
egories which, as P.T. Johnstone writes in 1977,

. . . paved the way for a truly autonomous de-
velopment of category theory as a foundation
for mathematics.

The development of concern to us began with F.W. Law-
vere’s 1964 paper An elementary theory of the category of

sets. Once Lawvere turned his attention to Grothendieck
toposes as generalized set theories, a new elementary the-
ory of the category of sets evolved called topos theory.
What makes topos theory also a constructive mathemat-
ics is that its so-called internal logic is intuitionistic logic.

Internal topos mathematics is consistent with classi-
cal mathematics, but does not contain Bishop’s construc-
tivism even when a natural number object is added. In-
ternal topos mathematics allows for liberal set construc-
tions which are not part of Brouwer’s intuitionism.



2 Mathematical Logic as Applied

Mathematics

It seems that ‘early’ constructivists only have interest in
constructive logic as a secondary matter.

Heyting used axiomatic theories of geometry and al-
gebra, where the use of hypotheticals (if we have a struc-
ture satisfying the following axioms; then the following
holds) is immediate.

Heyting wrote in 1978 that

Logic can be considered in different ways. As
a study of regularities in language it is an
experimental science which, like any such sci-
ence, needs mathematical notions; therefore
it belongs to applied mathematics.

His realization that mathematical logic can be seen as
applied mathematics dates back to the 1930s.



First, did a classical mathematician in 1927 know
whether with predicate logic one had picked a ‘good’ for-
mal language? One may reply yes since with the right
collection of atomic formulas there is strong expressive
power. Second, did a classical mathematician in 1927
have a complete set of axioms and rules? This second
question was answered in the affirmative by Gödel’s Com-
pleteness Theorem of 1930.

In 1927 the Dutch ‘Mathematical Society’ posted a
problem question about a formalization of Brouwer’s in-
tuitionistic mathematics. To this Heyting wrote an essay
for which he was awarded the prize the following year.
An expanded version of the essay was published in 1930.

Heyting chose a formal language with a collection
of logical operators equivalent to ⊤, ⊥, A ∧ B, A ∨ B,
A → B, ¬A, ∀xA, and ∃xA. First, this is a ‘good’ lan-
guage because of its expressive power. We should con-
sider the possible existence of logical constants beyond
what Heyting included, which allow for further relevant
distinctions.



Second, did Heyting have a complete set of axioms
and rules? Brouwer offered so-called weak counterexam-
ples. One may read in the existence of ‘classical’ Kripke
model counterexamples to the intuitionistic provability of
statements that such statements are plausibly not con-
structive tautologies. Insufficient, yes. Evidence of non-
provability, also yes. So if one is willing to accept such
models as evidence, then Heyting’s set of axioms and
rules is complete.

Intuitionistic predicate logic has been accepted by all
major schools of constructivism that we listed. However,
there is a Third Question that needs an answer: Are
the axioms and rules of Heyting’s intuitionistic predicate
logic themselves constructively acceptable?



3 Proof Interpretations for

Intuitionistic Logic

Let us expand the earlier 1978 quote of Heyting:

Logic can be considered in different ways. As
a study of regularities in language it is an
experimental science which, like any such sci-
ence, needs mathematical notions; therefore
it belongs to applied mathematics. If we con-
sider logic not from the linguistic point of
view but turn our attention to the intended
meaning, then logic expresses very general
mathematical theorems about sets and their
subsets.

How did Heyting address the intended meaning of the
logical constants? This should settle the Third Question,
and justify the axioms and rules of intuitionistic logic.
Heyting in a 1933 letter writes (my translation)

I went through the axioms and theorems of
Principia mathematica, and made a system
of independent axioms from the ones found
acceptable. Because of the relative complete-
ness of the one in Principia is, in my opinion,
the completeness of my system assured in the
best possible way.



Heyting’s broadly recognized proof interpretation of
the logical constants appear in 1934. The following de-
scription is from Troelstra and van Dalen in 1988.

H1. A proof of A ∧ B is given by presenting a proof of
A and a proof of B.

H2. A proof ofA∨B is given by presenting either a proof
of A or a proof of B (plus the stipulation that we
want to regard the proof presented as evidence for
A ∨B).

H3. A proof of A → B is a construction which permits
us to transform any proof of A into a proof of B.

H4. Absurdity ⊥ (contradiction) has no proof; a proof
of ¬A is a construction which transforms any hypo-
thetical proof of A into a proof of a contradiction.

H5. A proof of ∀xA(x) is a construction which trans-
forms a proof of d ∈ D (D the intended range of x)
into a proof of A(d).

H6. A proof of ∃xA(x) is given by providing d ∈ D, and
a proof of A(d).

This interpretation is now known as the Brouwer-Heyting-
Kolmogorov BHK interpretation.



The proof interpretation as stated is informal, and
uses primitive terms like ‘proof’, ‘construction’, and ‘hy-
pothetical’. The proof interpretation has been challenged,
mostly in the form of quests to refine or clarify Heyting’s
version, and always in support of Heyting’s intuitionistic
predicate logic.

Troelstra in 1977 presents a somewhat different proof
interpretation. The most significant differences with the
proof interpretation above are the required ‘insights’ in

H3’. A proof of A → B consists of a construction c which
transforms any proof of A into a proof of B (to-
gether with the insight that c has the property: d

proves A ⇒ cd proves B).

H5’. . . . we can explain a proof of ∀xAx as a construction
c which on application to any d ∈ D yields a proof
c(d) of Ad, together with the insight that c has this
property. . . .

The origin of these ‘insights’ can be traced to G. Kreisel
(1962–5), which Troelstra in 1981 describes as “Kreisel’s
attempts at a general theory of constructions and proofs”.
This variation on Heyting’s proof interpretation is called
the Brouwer-Heyting-Kreisel explanation.



The clarification of implication was a key problem for
constructivists. Kushner writes in 2006 about (Bishop
and) Markov:

. . . [Bishop] could not avoid the key problem
of any system of constructive mathematics,
namely, the problem of clarifying implication.
Markov spent the last years of his life strug-
gling to develop a large “stepwise” semantic
system in order to achieve, above all, a satis-
factory theory of implication.

Bishop writes in 1967 about the proof interpretation
of implication (emphasis added):

Statements formed with this connective, for
example, statements of the type ((P implies
Q) implies R), have a less immediate mean-
ing than the statements from which they are
formed, although in actual practice this does
not seem to lead to difficulties in interpreta-
tion.

For the foundations of constructive mathematics along
the lines of topos theory, the proof interpretation appears
of marginal importance.



4 Axiomatics and a

New Constructive Logic

For constructivists the proof interpretation is a major
factor in justifying the rules of intuitionistic predicate
logic. From Section 3 we see that the interpretation is
highly impredicative. In 2000 Michael Dummett writes
about the proof interpretation:

The principal reason for suspecting these ex-
planations of incoherence is their apparently
highly impredicative character; if we know
which constructions are proofs of the atomic
statements of any first-order theory, then the
explanations of the logical constants, taken
together, determine which constructions are
proofs of any of the statements of that theory;
yet the explanations require us, in determin-
ing whether or not a construction is a proof
of a conditional or of a negation, to consider
its effect when applied to an arbitrary proof
of the antecedent or of the negated state-
ment, so that we must, in some sense, be able
to survey or grasp some totality of construc-
tions which will include all possible proofs of
a given statement.



We develop a new proof interpretation and predicate
logic simultaneously. We imagine an idealized construc-
tivist who never makes mistakes, has perfect memory,
and has unlimited ‘time’. Our axioms are such that if the
proof objects are considered from a constructive point of
view, then the axioms about these proof objects are valid.
We follow Heyting, who wrote in 1931 (my translation):

A proof for a proposition is a mathematical
construction, which itself again can be con-
sidered mathematically.

The objects of our axiomatic approach are formal con-
structions of statements and proofs, where the proofs are
interpretable as constructive proofs.

Our proof objects p include an assumption as well
as a conclusion. We also write (A, p,B) for a proof p

with assumption A and conclusion B. We write A ⊢

B, with intended meaning B is derivable from A, if a
proof (A, p,B) exists for some p. Assumptions replace
‘hypotheticals’ of earlier proof interpretations.



We accept that if a constructivist assumes A, then A

is accepted trivially. This is a clarification of the intended
meaning of ‘assumption’. For each formula A we have
a trivial proof (A, p,A). So we also have logical axiom
schema

A ⊢ A

We have the following straightforward composition clause
for proofs. If (A, p,B) and (B, q, C) are proofs, then so
is (A, qp, C), where qp stands for the composition proof,
and which we can construct in a uniform way in terms of
p and q. So we have logical rule

A ⊢ B B ⊢ C

A ⊢ C



4.1 Propositional Logic

Negation ¬A is defined by A → ⊥ and bi-implication
A ↔ B is defined by (A → B) ∧ (B → A).

For each pair of formulas A and B we have a con-
junction formula A∧B with ∧ the usual intended mean-
ing of ‘and’. There are trivial proofs (A ∧ B, p1, A) and
(A ∧ B, p2, B). These come with the intended meaning
of assuming a conjunction A ∧ B. Consequently, with
composition, a proof (C, q,A ∧ B) implies that we have
proofs (C, p1q, A) and (C, p2q,B). In the other direction,
if we have proofs (C, p,A) and (C, q,B), then there is a
proof which we name (C, (p, q), A∧B), and which we can
construct in a uniform way in terms of p and q. So we
have rules

C ⊢ A ∧B

C ⊢ A C ⊢ B
and

C ⊢ A C ⊢ B

C ⊢ A ∧B

We include a symbol ⊤ with intended meaning ‘true’,
with for everyA a trivial essentially vacuous proof (A, p.⊤),
and axiom

A ⊢ ⊤



For each pair of formulas A and B we have a dis-
junction formula A∨B with ∨ the usual intended mean-
ing of ‘or’. There are trivial proofs (A, s1, A ∨ B) and
(B, s2, A ∨ B). Consequently, with composition, a proof
(A∨B, p, C) implies that we have proofs (A, ps1, C) and
(B, ps2, C). In the other direction, if we have proofs
(A, p, C) and (B, q, C), then there is a proof which we
name (A ∨B, [p, q], C), and which we can construct in a
uniform way in terms of p and q. This clarifies what it
means to assume a disjunction A ∨B. So we have rules

A ∨B ⊢ C

A ⊢ C B ⊢ C
and

A ⊢ C B ⊢ C

A ∨B ⊢ C

We include a symbol ⊥ with intended meaning ‘false’,
with for every A a trivial proof (⊥, p.A), and axiom

⊥ ⊢ A

With the axioms and rules so far we can show (A ∧

B) ∨ (A ∧ C) ⊢ A ∧ (B ∨ C). We axiomatize that we
have proofs (A∧ (B ∨C), q, (A∧B)∨ (A∧C)). This is a
clarification of the meaning of ‘assumption’, in this case
where the assumption has form A ∧ (B ∨ C). When a
constructivist assumes A ∧ (B ∨ C), then this construc-
tivist essentially also assumes A ∧ ((A ∧ B) ∨ (A ∧ C)).
So we have axiom

A ∧ (B ∨ C) ⊢ (A ∧B) ∨ (A ∧ C)



For each pair of formulas A and B we have an im-
plication formula A → B with → the intended meaning
of ‘implies’. Formula A → B has to reflect the meaning
of A ⊢ B within the bounds of what is constructively
acceptable. We write ¬A as abbreviation for A → ⊥.
If we have a proof (A ∧ B, p, C), then we have a proof
(A, pA, B → C), where pA takes proof p, replaces its as-
sumptions A ∧ B by assumption B and derives A ∧ B

using the assumption A of pA. Finally append that the
result is a proof for conclusion B → C. So we have rule

A ∧B ⊢ C

A ⊢ B → C

Assume A → B and B → C. So we assume proofs
(A, x,B) and (B, y, C) without specifying x and y any
further. As Bishop wrote in 1967:

Mathematics takes another leap, from the en-
tity which is constructed in fact to the entity
whose construction is hypothetical. To some
extent hypothetical entities are present from
the start: whenever we assert that every posi-
tive integer has a certain property, in essence
we are considering a positive integer whose
construction is hypothetical.

In this same sense x and y are hypothetical. From the as-
sumed x and y we construct the assumed proof (A, yx,C).
So we have rule

(A → B) ∧ (B → C) ⊢ (A → C)



Assume A → B and A → C. So we assume proofs
(A, x,B) and (A, y, C). So we have hypothetical proof
(A, (x, y), B ∧ C), and we have rule

(A → B) ∧ (A → C) ⊢ (A → (B ∧ C))

Assume B → A and C → A. So we assume proofs
(B, x,A) and (C, y,A). So we have hypothetical proof
(B ∨ C, [x, y], A), and we have rule

(B → A) ∧ (C → A) ⊢ ((B ∨ C) → A)

This completes our axiomatization with restriction to
the language of propositional logic.

Our system axiomatizes the so-called Basic Proposi-
tional Logic of Albert Visser of 1981, which is a proper
subsystem of Intuitionistic Propositional Logic.



Heyting wrote in 1978,

. . . logic expresses very general mathematical
theorems about sets and their subsets.

The principle (⊤ → A) ⊢ A is not one of these very
general mathematical theorems. The reason is that a
proof ((⊤ → A), p, A) is expected to turn a ‘hypotheti-
cal’ assumed proof (⊤, x, A) into an actual proof p with
conclusion A. Such a very general constructive theorem
is an impossibility. Our objection is in line with what
Dummett wrote in 2000:

As mathematics advances, we become able to
conceive of new operations and to recognize
them and others as effectively transforming
proofs of B into proofs of C; and so the mean-
ing of B → C would change, if a grasp of it
required us to circumscribe such operations
in thought. Moreover, an operation which
would transform any proof of B → C avail-
able to us now into a proof of D might not
so transform proofs of B → C which became
available to us with the advance of mathe-
matics: and so what would now count as a
valid proof of (B → C) → D would no longer
count as one.

We do not agree with Dummett’s follow-up “These fears
are groundless”.



Do we have a complete set of axioms and rules for
constructive propositional logic? We have a complete-
ness theorem for Basic Propositional Logic with tran-
sitive Kripke models, that is, Kripke models where the
world relation is transitive but not necessarily reflexive
as in the case for Intuitionistic Propositional Logic. Us-
ing transitive Kripke models as weak counterexamples to
constructive provability of propositional statements has
the same limited value as using reflexive transitive Kripke
models has as a tool to make weak counterexamples in
the intuitionistic case. Insufficient yes, but evidence of
non-provability, also yes. If one is willing to accept transi-
tive Kripke models as evidence, then Basic Propositional
Logic is complete.



The end.
More on predicate logic in a later talk.


