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1 Constructive Mathematics

There are, from a historical perspective, three major
schools of constructive mathematics: Brouwer, Markov,
and Bishop. We add one other source of constructive
mathematics and logic for which the term ‘school’ may
not apply. Category theory in general, and topos the-
ory in particular, have a peculiar fruitful relation with
constructive mathematics and intuitionistic logic.

Heyting’s intuitionistic predicate logic represents very
general regularities observed in language used in con-
structive mathematical proofs. The intended meanings
of the logical constants are clarified through Heyting’s
proof interpretation. A re-evaluation of proof interpre-
tation and predicate logic leads to the new constructive
Basic logic properly contained in intuitionistic logic. The
proposition logical part of Basic logic is due to Albert
Visser.



2 Mathematical Logic as Applied

Mathematics

Heyting studied axiomatic theories of geometry and al-
gebra, where the use of very general hypotheticals is nat-
ural. Heyting (1978) writes that

Logic can be considered in different ways. As
a study of regularities in language it is an
experimental science which, like any such sci-
ence, needs mathematical notions; therefore
it belongs to applied mathematics.

Did a classical mathematician in 1927 have with pred-
icate logic a ‘good’ formal language? Yes. Did a classical
mathematician in 1927 have a complete set of axioms
and rules? Yes by Gödel’s Completeness Theorem of
1930. These two questions about classical logic can also
be asked in the intuitionistic case.

In 1927 the Dutch ‘Mathematical Society’ posted a
prize question about a formalization of Brouwer’s intu-
itionistic mathematics, including the problem of formal-
izing an intuitionistic predicate logic. To this Heyting
wrote the winning essay. An earlier partial version is due
to A.N. Kolmogorov (1925).

Heyting chose a formal language with a collection of
logical operators equivalent to⊤, ⊥, A∧B, A∨B, A → B,
¬A, ∀xA, and ∃xA. The axioms and rules are a proper
subset of the axioms and rules known for classical logic.
Is Heyting’s language a ‘good’ language? No new un-
questioned logical constants have shown up. So yes.



Did Heyting have a complete set of axioms and rules?
Heyting (1956, 1971) states:

It must be remembered that no formal system
can be proved to represent adequately an in-
tuitionistic theory. There always remains a
residue of ambiguity in the interpretation of
the signs, and it can never be proved with
mathematical rigour that the system of ax-
ioms really embraces every valid method of
proof.

and

. . . one is never sure that the formal system
represents fully any domain of mathematical
thought; at any moment the discovering of
new methods of reasoning may force us to
extend the formal system.

What evidence justifies us to conclude that a formal sen-
tence should not be derivable from the formal system?
Brouwer offered so-called weak counterexamples against
principles like Excluded Middle A ∨ ¬A. The evidence
for non-provability is different in nature from provability.

An illustration of Kripke models as weak Brouwe-
rian counterexamples. A version based on the halting
problem. Consider a two-node reflexive transitive Kripke
model with nodes α ≺ β. Imagine a sequence t1, t2, t3, . . .
with ti ∈ {α, β} for all i, and ti � tj for all i ≤ j, and
with t1 = α. The constructivist need not know whether
there is some i for which ti = β. As long as ti = α,



the constructvist knows structure Aα, with the poten-
tial of discovering at a later integer j > i that tj = β
and the constructivist knows structure Aβ . The logical
statements which that constructivist accepts are the ones
forced at node α.

One may read in the existence of ‘classical’ Kripke
model counterexamples to the intuitionistic provability of
statements that such statements are not constructive tau-
tologies. Insufficient, yes. Evidence of non-provability,
also yes. If one accepts such models as evidence, then
Heyting’s system is complete.

Intuitionistic predicate logic has been accepted by all
major schools of constructivism. A Third Question:
Are the axioms and rules of intuitionistic predicate logic
constructive?

3 Proof Interpretations for Intu-

itionistic Logic

Heyting (1933) writes (my translation)

I went through the axioms and theorems of
principia mathematica, and made a system
of independent axioms from the ones found
acceptable. Because of the relative complete-
ness of the one in principia is, in my opinion,
the completeness of my system assured in the
best possible way.

Heyting (1978) writes:



Logic can be considered in different ways. As
a study of regularities in language it is an
experimental science which, like any such sci-
ence, needs mathematical notions; therefore
it belongs to applied mathematics. If we con-
sider logic not from the linguistic point of
view but turn our attention to the intended
meaning, then logic expresses very general
mathematical theorems about sets and their
subsets.

Heyting’s 1934 proof interpretation of the logical con-
stants, the Brouwer-Heyting-Kolmogorov BHK interpre-
tation, this version is by Troelstra and van Dalen (1988).

H1. A proof of A ∧ B is given by presenting a proof of
A and a proof of B.

H2. A proof ofA∨B is given by presenting either a proof
of A or a proof of B (plus the stipulation that we
want to regard the proof presented as evidence for
A ∨B).

H3. A proof of A → B is a construction which permits
us to transform any proof of A into a proof of B.

H4. Absurdity ⊥ (contradiction) has no proof; a proof
of ¬A is a construction which transforms any hypo-
thetical proof of A into a proof of a contradiction.

H5. A proof of ∀xA(x) is a construction which trans-
forms a proof of d ∈ D (D the intended range of x)
into a proof of A(d).



H6. A proof of ∃xA(x) is given by providing d ∈ D, and
a proof of A(d).

The proof interpretation has been challenged from mul-
tiple sides, mostly to refine or clarify, not as a challenge
to intuitionistic predicate logic.

The Brouwer-Heyting-Kreisel explanation, a some-
what different proof interpretation. The most significant
differences are the required ‘insights’ (Troelstra 1977)

H3’. A proof of A → B consists of a construction c which
transforms any proof of A into a proof of B (to-
gether with the insight that c has the property: d
proves A ⇒ cd proves B).

H5’. . . . we can explain a proof of ∀xAx as a construction
c which on application to any d ∈ D yields a proof
c(d) of Ad, together with the insight that c has this
property. . . .

Kushner (2006) writes about (Bishop and) Markov:

. . . [Bishop] could not avoid the key problem
of any system of constructive mathematics,
namely, the problem of clarifying implication.
Markov spent the last years of his life strug-
gling to develop a large “stepwise” semantic
system in order to achieve, above all, a satis-
factory theory of implication.

Bishop (1967) writes about the interpretation of impli-
cation (emphasis added):



Statements formed with this connective, for
example, statements of the type ((P implies
Q) implies R), have a less immediate mean-
ing than the statements from which they are
formed, although in actual practice this does
not seem to lead to difficulties in interpreta-
tion.

Michael Dummett (2000) about the interpretation:

The principal reason for suspecting these ex-
planations of incoherence is their apparently
highly impredicative character; if we know
which constructions are proofs of the atomic
statements of any first-order theory, then the
explanations of the logical constants, taken
together, determine which constructions are
proofs of any of the statements of that theory;
yet the explanations require us, in determin-
ing whether or not a construction is a proof
of a conditional or of a negation, to consider
its effect when applied to an arbitrary proof
of the antecedent or of the negated state-
ment, so that we must, in some sense, be able
to survey or grasp some totality of construc-
tions which will include all possible proofs of
a given statement.



4 Axiomatics and a New Construc-

tive Logic

Our method to find constructive predicate logic is based
on an axiomatic approach. The accumulation of proofs is
closed under certain canonical rules, which are sufficient
to uniquely determine constructive predicate logic. The
axioms and rules need not be a complete set for a theory
of constructions and proofs. We do not require the exis-
tence of a collection of all proofs. Heyting (1931) writes
(my translation):

A proof for a proposition is a mathematical
construction, which itself again can be con-
sidered mathematically.

We write (A, p,B) for a proof p with assumption A
and conclusion B. We write A ⊢ B, with intended mean-
ing B is derivable from A, if a proof (A, p,B) exists. This
approach is in line with a suggestion of Gödel (1938),
and distinct from Kreisel (1962) and (p,B). The word
‘assumption’ replaces ‘hypothetical’ of earlier interpre-
tations. In our axiomatic approach we claim properties
that assumptions imply without a need to further specify
the meaning of ‘assumption’.

For each formula A we have a trivial proof (A, p,A).
So we also have logical axiom schema

A ⊢ A

If (A, p,B) and (B, q, C) are proofs, then so is (A, q ·
p, C), also written as (A, qp, C). So we have logical rule



A ⊢ B B ⊢ C

A ⊢ C

4.1 Propositional Logic

Negation ¬A is defined by A → ⊥, and bi-implication
A ↔ B is defined by (A → B) ∧ (B → A).

There are trivial proofs (A∧B, p1, A) and (A∧B, p2, B).
So, with composition, a proof (C, q,A ∧ B) implies that
we have proofs (C, p1q, A) and (C, p2q,B). If we have
proofs (C, p,A) and (C, q,B), then there is a proof which
we name (C, 〈p, q〉, A ∧B). So we have rules

C ⊢ A ∧B

C ⊢ A C ⊢ B
and

C ⊢ A C ⊢ B

C ⊢ A ∧B

For every A a trivial proof (A, p.⊤), and axiom

A ⊢ ⊤

There are trivial proofs (A, s1, A∨B) and (B, s2, A∨
B). So, with composition, a proof (A ∨ B, p, C) implies
that we have proofs (A, ps1, C) and (B, ps2, C). If we
have proofs (A, p, C) and (B, q, C), then there is a proof
which we name (A ∨B, [p, q], C). So we have rules

A ∨B ⊢ C

A ⊢ C B ⊢ C
and

A ⊢ C B ⊢ C

A ∨B ⊢ C

For every A a trivial proof (⊥, p.A), and axiom

⊥ ⊢ A



We axiomatize that we have proofs (A∧(B∨C), d, (A∧
B)∨(A∧C)). When a constructivist assumes A∧(B∨C),
then this constructivist also assumes A∧ ((A∧B)∨ (A∧
C)). So we have distributivity axiom

A ∧ (B ∨ C) ⊢ (A ∧B) ∨ (A ∧ C)

Add a further clarification.

If we have a proof (A∧B, p, C), then we have a proof
(A, pA, B → C), where pA takes proof p, replaces its
assumptions A ∧ B by assumption B and derives A ∧ B
using the assumption A of pA. Finally append that the
result is a proof for conclusion B → C. So we have rule

A ∧B ⊢ C

A ⊢ B → C

Assume A → B and B → C. So we assume proofs
(A, x,B) and (B, y, C) without specifying x and y any
further. Bishop (1967) writes:

Mathematics takes another leap, from the en-
tity which is constructed in fact to the entity
whose construction is hypothetical. To some
extent hypothetical entities are present from
the start: whenever we assert that every posi-
tive integer has a certain property, in essence
we are considering a positive integer whose
construction is hypothetical.

In this same sense x and y are hypothetical. From the
assumed x and y we construct the proof (A, yx,C). So
we have rule



(A → B) ∧ (B → C) ⊢ A → C

Assume A → B and A → C. So we assume proofs
(A, x,B) and (A, y, C). So we have proof (A, 〈x, y〉, B ∧
C), and we have rule

(A → B) ∧ (A → C) ⊢ A → (B ∧ C)

Assume B → A and C → A. So we assume proofs
(B, x,A) and (C, y,A). So we have proof (B∨C, [x, y], A),
and we have rule

(B → A) ∧ (C → A) ⊢ (B ∨ C) → A

This complete system axiomatizes the Basic Proposi-
tional Logic of Albert Visser.

To get Intuitionistic Propositional Logic it suffices to
add schema ⊤ → A ⊢ A. Heyting (1978) writes that

. . . logic expresses very general mathematical
theorems about sets and their subsets.

The principle ⊤ → A ⊢ A is not one of these very gen-
eral mathematical theorems. A proof ((⊤ → A), p, A) is
asked to turn a ‘hypothetical’ assumed proof (⊤, x, A)
into an actual proof p with conclusion A. Dummett
(2000) writes:

As mathematics advances, we become able to
conceive of new operations and to recognize
them and others as effectively transforming
proofs of B into proofs of C; and so the mean-
ing of B → C would change, if a grasp of it



required us to circumscribe such operations
in thought. Moreover, an operation which
would transform any proof of B → C avail-
able to us now into a proof of D might not
so transform proofs of B → C which became
available to us with the advance of mathe-
matics: and so what would now count as a
valid proof of (B → C) → D would no longer
count as one.

A proof x may only become available after mathematics
has advanced with newly conceived operations. Limited
versions of modus ponens still hold in Basic Logic, like

C ⊢ A ⊢ A → B

C ⊢ B

A completeness theorem for Basic Propositional Logic
with transitive Kripke models, so not necessarily reflexive
as for Intuitionistic Propositional Logic. Insufficient yes.
Evidence of non-provability, also yes.

Similar to Dummett, Mark van Atten (2018) writes:

Intuitionists consider the notion of proof to
be open-ended, not only epistemically (at no
moment do we know all possible proofs) but
ontologically, and hence they deny that there
is such a thing as the totality of all intuition-
istic proofs [. . . Brouwer’s PhD . . . ]. There
is only a growing universe of mathematical
objects and proofs.



Over Basic logic we have the equivalence of ¬¬A and
¬¬¬¬A. Brouwer writes in 1924 that even ¬A and ¬¬¬A
are equivalent. His key step is that A implies ¬¬A. In
particular a constructive proof ((⊤ → ⊥), p,⊥) which
turns a hypothetical proof of inconsistency into an actual
proof of a contradiction. This argument is circular.

4.2 Predicate Logic

In this Section we write π, σ or τ for proof objects, and
ξ, η or ζ for proof variables.

Variables x range over descriptions of elements that
are intended to belong to a domain of discourse. The
word ‘description’ replaces ‘construction’. Bishop (1967)
writes ‘description’ for sets defined in a possibly incom-
plete way. We write Ex or E(x) for the propositional
statement that the element described by x belongs to
the domain of discourse.

Write (A, πx, B) for a proof πx with assumption A
and conclusion B, where list x includes all free variables.
We write A ⊢x B if a proof (A, πx, B) exists.

We have a constant symbol ℓ for the empty descrip-
tion, with proof (E ℓ, π,⊥), and axiom

E ℓ ⊢ ⊥

We have rules

A ⊢xy B

A ⊢x B
y /∈ FV(A,B), and

A ⊢x B

A ⊢xy B

We have substitution rule



Ax ⊢x Bx

Ay ⊢y By
no variables of y become bound

and substitution rule

Axy ⊢xy Bxy

Axc ⊢x Bxc

Many rules of predicate logic are the same as in the
proposition logical case, for example

A ⊢x A

and

A ⊢x B B ⊢y C

A ⊢xy C

The same for ∧ and ∨. Farther below implication → is
combined with universal quantification.

We have abstract axiom schemas (Px, πx,Ex) for

Px ⊢x Ex

There are trivial proofs (A∧Ex, σxy, ∃xA). Suppose
we have a proof (∃xA, πz, B). By composition we have
a proof (A ∧ Ex, (πσ)xyz, B). In the other direction,
suppose we have a proof (A ∧ Ex, πxy, B), where x is
not free in B. Then there is a proof which we name
(∃xA, [π]y, B). So we have rules

A ∧ Ex ⊢xy B

∃xA ⊢y B
x /∈ FV(B),

∃xA ⊢z B

A ∧ Ex ⊢xz B



We axiomatize that we have proofs (A∧∃xB, δy, ∃x(A∧
B)), where x is not free in A. So we have existential dis-
tributivity axiom

A ∧ ∃xB ⊢y ∃x(A ∧B) x not free in A

Add a further clarification.

We combine implication with universal quantification.
Motivation: Suppose we have a proof (A ∧ Ex, πxy, B)
with x not free in A. Then we have (A, σy, ∀x(Ex →
B)). Formula ∀x(Ex → B) is equivalent to ∀x(⊤ → B).
Just as it is constructively acceptable to conclude A ⊢y

∀x(⊤ → C) from A ∧ Ex ⊢xy C (x not free in A), it is
constructively acceptable to conclude A ⊢y ∀x(B → C)
from A ∧B ∧ Ex ⊢xy C (x not free in A). Nested quan-
tifications like ∀x∀y(A → B) are no longer available. So
we introduce for each pair of formulas A and B universal
implication formulas ∀x(A → B). List x is allowed to
have length 0. We write A → B as short for ∀(A → B).

We have rules

C ⊢yz ∀xy(A → B)

C ⊢yz ∀x((A ∧ E y) → B)

and

A ∧B ∧ Ex ⊢xy C

A ⊢y ∀x(B → C)
none of x free in A

In particular A ⊢y B → C follows from A ∧B ⊢y C.
Earlier axioms for implication are replaced by

∀x(A → B) ∧ ∀x(B → C) ⊢y ∀x(A → C)



∀x(A → B) ∧ ∀x(A → C) ⊢y ∀x(A →
(B ∧ C))

∀x(B → A)∧∀x(C → A) ⊢y ∀x((B ∨C) →
A)

For the existential quantifier ∃ we need a further such
formalized version. We have axiom

∀xy(A → B) ⊢z ∀x(∃yA → B) y /∈ FV(B)

This completes our axiomatization of Basic Predicate
Logic.

We have a completeness theorem for Basic Predi-
cate Calculus with transitive Kripke models. Transi-
tive Kripke models provide weak counterexamples to con-
structive provability of predicate logical statements. In-
sufficient, yes. Evidence of non-provability, also yes.


