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1 Intuitionistic Logic

There are, from a historical perspective, three major
schools of constructive mathematics: Brouwer, Markov,
and Bishop.

Heyting’s intuitionistic predicate logic IQC of 1927–
30 represents very general regularities observed in lan-
guage used in constructive mathematical proofs. At least
until the middle 1930s some criticized IQC as too strong
for constructive mathematics. After 50 years IQC be-
came treated as the standard (two reasons).

The intended meaning of the logical constants is clari-
fied through Heyting’s 1928–34 proof interpretation. Still
criticized (one main reason).
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2 Constructive Logic

Basic logic BQC is the constructive logic. The proposi-
tion logical part is due to Albert Visser, 1980–81.

A justification is based on a proof interpretation with
triples (A, p,B) instead of pairs (p,B) as by Heyting or
Kreisel (the idea of triples is not completely new). The
limitations of BQC are based on weak counterexamples
(similar to ones for IQC).

BQC is a subsystem of IQC with weakened modus po-
nens. No longer ¬A ≡ ¬¬¬A, but still ¬¬A ≡ ¬¬¬¬A.

BQC is complete for the class of transitive Kripke
models.

IQC equals BQC plus > → A ` A.
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3 Kolmogorov 1925

A significant partial version of IQC is due to Kolmogorov
(1925).

Classical logic CQC is definable by adding ¬¬A ` A
to IQC. Define translation A 7→ Ak by replacing all sub-
formulas B by ¬¬B (defined by induction on the com-
plexity of B). Kuroda’s 1951 translation is equivalent.

CQC ` A if and only if IQC ` Ak

So IQC has expressive strength.
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4 BQC Language Necessities

Instead of A → B and ∀xA, the language of BQC has
∀x(A→ B), where x equals x1, . . . , xn with n ≥ 0.

Former ∀xA ‘re-appears’ as ∀x(> → A)

New ∀xy(A→ B) avoids problematic nested ∀x∀y

A→ B is now definable as ∀(A→ B)

Over BQC we still define ¬A by A→ ⊥.

4



5 A new Kolmogorov Translation

Classical logic CQC is definable by adding ¬¬A ` A
to BQC. Define translation A 7→ Ak by replacing ‘all’
subformulas B by ¬¬B as follows:

P k := ¬¬P for atoms P

(A ∧B)k := ¬¬(Ak ∧Bk)

(A ∨B)k := ¬¬(Ak ∨Bk)

(∃xA)k := ¬¬(∃xAk)

(∀x(A→ B))k := ¬¬(∀x¬¬(Ak → Bk))

We have

(∀x(A→ B))k ≡ ¬¬(∀x(Ak → Bk))

There is an equivalent translation based on Kuroda’s
1951 version. A main theorem:

CQC ` A if and only if BQC ` Ak

So BQC has expressive strength.
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