
Kolmogorov and Kuroda

Translations

into Basic Predicate Logic

Mohammad Ardeshir
Department of Mathematical Sciences

Sharif University of Technology
P.O. Box 11365-9415

Tehran, Iran
e-mail: mardeshir@sharif.edu

Wim Ruitenburg
Department of Mathematical and Statistical Sciences

Marquette University
P.O. Box 1881

Milwaukee, WI 53201, USA
e-mail: wim.ruitenburg@marquette.edu

Abstract

Kolmogorov established the principle of the double negation translation by
which to embed Classical Predicate Logic CQC into Intuitionistic Predicate Logic
IQC. We show that the obvious generalizations to the Basic Predicate Logic of
[ArRu20] and to BQC of [Ru98], a proper subsystem of IQC, go through as well.
The obvious generalizations of Kuroda’s embedding are shown to be equivalent to
the Kolmogorov variant. In our proofs novel nontrivial techniques are needed to
overcome the absence of full modus ponens in Basic Predicate Logic.

In [ArRu20] we argued that IQC is not the logic of constructive mathematics.
Our doubts were far from new. New was that we put forward an alternative, BQC.
One concern is that BQC is too weak for serious mathematics, or even trivial. This
paper is one step to alleviate such concerns.

1 Introduction

There is a common misconception that logic without modus ponens A∧(A → B) ⊢ B is
too weak for the derivation of much mathematics of substance. One motivation for this
paper is to show that Basic Predicate Logic BQC of [Ru98] has much logical strength
despite the absence of full modus ponens. Our straightforward generalizations of the
Kolmogorov and Kuroda embeddings of [Ko25] and [Ku51] are quick ways to establish
this. We embed CQC into BQC, a proper subsystem of IQC.

The Kolmogorov embedding from CQC into IQC puts double negations in front of
all subformulas. We show that this robust embedding even works for the Basic Predi-
cate Logic of [ArRu20], so also works for BQC. Instead of replacing subformulas A by
¬¬A, we employ a propositional letter a, and replace subformulas A by (A → a) → a.
This extends the proposition logical translation implied by [AAR16] to predicate logic.
Parameter a allows for a slightly more detailed analysis of the translations. The Kuroda
translation turns out to be a more parsimonious equivalent of the Kolmogorov transla-
tion. Kuroda’s original translation of [Ku51], from CQC into IQC, is an extension of
Glivenko’s proposition logical translation of [Gl29].

Generalizations along the lines of the Gödel and Gentzen translations are slightly
more restricted versions of the translations in this paper. We discuss them in another
paper when we consider aspects of Basic Arithmetic and embeddings of Peano Arithmetic
into Basic Arithmetic.

1

Although the Kolmogorov and Kuroda translations are equivalent, generalizations
need not be. Brown and Rizkallah in [BrRi14] prefer to extend the intuitionistic Kuroda
translation to variants of simple intuitionistic type theories. Van den Berg in [vdB19]
makes no mention of Glivenko or Kolmogorov. The intuitionistic Kuroda translation is
generalized to special j translations or nuclei.

2 Basic Logic Axioms and Rules

The Basic Predicate Logic axiom and rule system BQC-E below is derived from and
equivalent to the one in the paper [ArRu20] except for an extension with function symbols
and equality. At the end of this section we clarify its connection with the Basic Predicate
Logic BQC of [Ru98]. Here we are not trying to show that BQC is the constructive
predicate logic. So we use a simpler notation.

We call the Basic Predicate Logic below BQC-E so as to distinguish it from the BQC
of [Ru98]. Its language L-E still needs universal implication ∀x(A → B), a notation
which combines implication with universal quantification over finite lists of variables x.
Implication A → B is short for the special case ∀(A → B). This convention creates the
minor difficulty that A → B cannot be named quantifier free without some confusion.
We rescue this by calling formulas including A → B quantified variable free (assum-
ing A and B are) instead of quantifier free. Proposition logical formulas are the ones
without quantified variables. Proposition logical combinations of formulas are formed by
combining them using only quantified variable free extra formulas and ∧, ∨, and →.

We include the existence predicate Ex of [Sc79] for the following reason. In classi-
cal logic, models with empty domain trivially reduce to propositional logic, so models
with empty domain are unnecessary for Classical Predicate Logic CQC. Not so in the
constructive case. Even in intuitionism one can imagine interesting structures with the
property that ‘the domain not not has an element,’ which in constructive mathemat-
ics differs from ‘the domain has an element’. Kripke models are one common way to
establish such differences. See [Dr79] or [TrvD88].

We write entailment ~A ⊢ B where ~A = (A1, A2, . . . , An) is a list of formulas,

with intended meaning that formula B is derivable from the formulas in list ~A. We
write ⊢ B when n = 0. Write ~A,An+1 as alternate for (A1, A2, . . . An+1) or A0, ~A for
(A0, A1, . . . , An). We ignore formula parentheses when it improves readability.

We freely reorder, or add and remove duplicate entries, in lists ~A. For entailment ⊢
we have axioms and rules

A ⊢ A and
~D ⊢ B

~D,A ⊢ B
and

~D,A ⊢ B ~D,B ⊢ C

~D,A ⊢ C

We have predicates P (x1, x2, . . . , xm) of arities m ≥ 0. There is a special predicate
x = y for the equality relation, and a special predicate Ex for existence. We have partial
function symbols f(x1, x2, . . . , xm) of arities m ≥ 0. We don’t require them to be total.
In particular, constant symbols are partial function symbols of arity 0. For example we
allow the possibility of constant symbols c for which we have ¬¬E c but not E c. We
have a constant symbol ℓ for undefined element. Terms are defined in the usual way as
compositions using function symbols and variables.

For convenience we may write x for lists x1, x2, . . . , xm of variables of finite length
m ≥ 0. We write xy for concatenated lists x1, x2, . . . , xm, y1, y2, . . . , yn or xy for
x1, x2, . . . , xm, y. For lists of terms t1, t2, . . . , tk we use similar conventions. We write
P (x) for atoms P (x1, x2, . . . , xm) and t(x) for terms t(x1, x2, . . . , xm).

We have the usual ∧, ∨, ⊤, ⊥, and ∃ of the intuitionistic predicate logic language,
where ⊤ and ⊥ are both predicates and logical constants. Instead of implication and

2

universal quantification we have universal implication construction ∀x(A → B), where
list x is allowed to be empty. We ignore the order of the variables in x, or duplications
among them. We write A → B as short for ∀(A → B). Negation ¬A is defined by
A → ⊥, and bi-implication ∀x(A ↔ B) is defined by ∀x(A → B) ∧ ∀x(B → A).

With ∧ we have rules

~D,A,B ⊢ C

~D, A ∧B ⊢ C
and

~D, A ∧B ⊢ C

~D,A,B ⊢ C

and

~D ⊢ A ∧B

~D ⊢ A
and

~D ⊢ A ∧B

~D ⊢ B
and

~D ⊢ A ~D ⊢ B

~D ⊢ A ∧B

For ⊤ we have axiom

⊢ ⊤

For ∨ we have rules

~D, A ∨B ⊢ C

~D,A ⊢ C
and

~D, A ∨B ⊢ C

~D,B ⊢ C
and

~D,A ⊢ C ~D,B ⊢ C

~D, A ∨B ⊢ C

Lists ~D of additional assumptions are key in proving distributivity. Straightforward
proofs yield A,B ⊢ (A ∧B) ∨ (A ∧ C) and A,C ⊢ (A ∧B) ∨ (A ∧ C), so also

A, B ∨ C ⊢ (A ∧B) ∨ (A ∧ C)

Thus we prove

A ∧ (B ∨ C) ⊢ (A ∧B) ∨ (A ∧ C)

The symbol ⊥ can be left out for theories that don’t have an acceptable candidate
for ‘false’. For the theory of arithmetic an atom like 1 = 0 can perform the role. If we
include ⊥, then we have axioms

⊥ ⊢ A

We write Ex as short for Ex1 ∧ Ex2 ∧ . . . ∧ Exm.
Predicates P are strict, so we have axioms

P (x) ⊢ Ex

For the equality predicate we have axioms

Ex ⊢ x = x and A ∧ x = y ⊢ A[x/y] for atoms A

Functions may be partial, but they are strict. So we have axioms

E f(x) ⊢ Ex

For the constant symbol for an undefined element we have axiom

E ℓ ⊢ ⊥ (or schema E ℓ ⊢ A if ⊥ is left out)

So E ℓ can play the role of ‘false’.

We have substitution rule

~D ⊢ B

~D[x/t] ⊢ B[x/t]
no variable of term t becomes bound

3

For ∃ we have rules

~D, A ∧ Ex ⊢ B

~D, ∃xA ⊢ B
x not free in B, ~D and

~D, ∃xA ⊢ B

~D, A ∧ Ex ⊢ B

Lists ~D of additional assumptions are key in proving existential distributivity. A straight-
forward proof yields A, B ∧ Ex ⊢ ∃x(A ∧B). So if x is not free in A, then

A, ∃xB ⊢ ∃x(A ∧B)

Thus we prove

A ∧ ∃xB ⊢ ∃x(A ∧B) x not free in A

We write ∃xA as short for ∃x1∃x2 . . . ∃xnA.

For universal implication we have rule

~D, A ∧ Ex ⊢ B

~D ⊢ ∀x(A → B)
variables x not free in ~D

(so ~D,A ⊢ B implies ~D ⊢ A → B), and axioms

∀x(A → B) ⊢ ∀xy(A → B) y not free to the left of the entailment
∀xy(A → B) ⊢ ∀x((A ∧ E y) → B)

Finally the ‘formalization’ axioms

∀x(A → B) ∧ ∀x(B → C) ⊢ ∀x(A → C)
∀x(A → B) ∧ ∀x(A → C) ⊢ ∀x(A → (B ∧ C))
∀x(B → A) ∧ ∀x(C → A) ⊢ ∀x((B ∨ C) → A)
∀xy(A → B) ⊢ ∀x((A[y/t]∧E t) → B[y/t]) no variable of term t becomes

bound in A or B
∀xy(A → B) ⊢ ∀x(∃yA → B) y not free in B

We freely rename variables bound by the quantifiers ∃ and ∀, with the usual restric-
tions that with substitution the new variables do not become bound by other quantifiers,
and unchanged variables do not become bound by the new variables attached to the
quantifier.

This completes an axiomatization of BQC-E of the Basic Predicate Logic of [ArRu20]
extended with function symbols and equality. Define Intuitionistic Predicate Logic IQC-
E by the addition of schema ⊤ → A ⊢ A, which allows one to derive modus ponens.
Define Classical Predicate Logic CQC-E by adding schemas ⊤ → A ⊢ A plus Excluded
Middle ⊢ A ∨ ¬A or, alternatively, by adding only the schema of double negation
elimination ¬¬A ⊢ A.

BQC-E embeds into the Basic Predicate Logic BQC of [Ru98] by adding a new
predicate Fx to the language of BQC, and relativize BQC-E quantifiers to F while
sending E to F . The presence of ℓ makes that over the BQC language with extra
predicate Fx the overall domain has an element, as is required. Equality of BQC-
E becomes a congruence on {x | Fx}. Over BQC we replace partial n-ary function
symbols by (n+ 1)-ary predicates.

We can define BQC as a theory over BQC-E after restricting its language L-E to
sub-language L as follows. Remove E and ℓ from L-E, and axiom E ℓ ⊢ ⊥ from BQC-E.
In the remaining axioms of BQC-E replace all occurrences of E t by ⊤. The result is a
new BQC over L, equivalent to the old BQC of [Ru98]. Expressions ~D ⊢ B of this new

BQC correspond with expressions
∧ ~D ⇒ B of the old BQC of 1998.

We call a theory over language L-E ℓ-free if we only consider derivations that don’t
mention ℓ. This is our pragmatic way to define theories over the sub-language of L-E
formed by removing ℓ and axiom E ℓ ⊢ ⊥.

4

Proposition 2.1. Let ~D0 ⊢ B0, . . . , ~Dn ⊢ Bn be a list of entailments over language L
of BQC. For all i let xi be a list of the free variables of ~Di ⊢ Bi. Let Γ be the ℓ-free
theory (BQC -E) ∪ {⊢ ∃x⊤} ∪ {Ex ⊢ E f(x)}f . Then

There is a BQC derivation of ~D0 ⊢ B0 from { ~Di ⊢ Bi}1≤i≤n

if and only if

There is a Γ derivation of ~D0, Ex0 ⊢ B0 from { ~Di, Exi ⊢ Bi}1≤i≤n

Proof. Suppose the first claim. We convert each step in a derivation tree over BQC into
a short derivation over Γ. Most rules almost immediately convert into rules over Γ. One
concern is the possibility that the conclusion entailment has too many additional free
variables. Here is its solution: Over language L-E suppose ~D0, Ex0y ⊢ B0 follows from
a list ~Di, Exi ⊢ Bi. If x0 contains some variable x, then with substitution of x for all
variables in y we get ~D0, Ex0 ⊢ B0. If x0 is empty, then ~D0, B0 is a list of sentences,
so ~D0, Ex ⊢ B0 for some auxiliary variable x, so also ~D0, ∃x⊤ ⊢ B0. Another concern
is that with substitution we may introduce extra expressions E t(x) in the entailment.
Already ℓ-free BQC-E proves E t(x) ⊢ Ex. Theory Γ provides the reverse Ex ⊢ E t(x).

Suppose the second claim. Because of the free permission of ~D on the left, we can
replace in all axioms and rules of Γ, for all i entailment ~Di ⊢ Bi by ~Di, Exi ⊢ Bi. For
example ~D, Ey ⊢ ∀x(A → B) follows from ~D, A, Exy ⊢ B. Variables among y

that don’t occur free elsewhere in the entailment can be removed using axiom ⊢ ∃x⊤ of
Γ. With the further axiom set {Ex ⊢ E f(x)}f we replace all ~Di, Bi by ~D′

i, B
′
i without

occurrences of E t. The resulting rule after removal of all Exi is ~D′
0 ⊢ B′

0 derivable from

the ~D′
i ⊢ B′

i over BQC.

BQC of [Ru98] embeds conservatively into ℓ-free theory (BQC -E)∪{⊢ ∃x⊤}∪{Ex ⊢
E f(x)}f by translation (writing A ⊢ B instead of A ⇒ B)

A ⊢ B 7→ A ∧ Ex ⊢ B where x is all free variables of A ∧B

Recall that intuitionistic predicate logic IQC is sound and complete for reflexive transitive
Kripke models. Similarly, BQC is sound and complete for transitive Kripke models, see
[Ru98]. There is no Kripke model completeness theorem for BQC-E.

In Sections 3 and 4 we essentially never use ℓ. So their results immediately translate
to BQC.

3 Basic Logic Properties

This section lists BQC-E properties many of whom are used in Sections 4 and 5. The
list also illustrates how one can derive certain kinds of formulas. We don’t attempt to
have a complete list.

We write A ≡ B as short for A ⊢ B plus B ⊢ A. So ≡ is the congruence associated
with pre-order ⊢. We add a propositional letter a to the predicate logic language for
later use in our generalized Kolmogorov and Kuroda translations. Following [AAR16]
we write Aa as short for A → a and Aaa as short for (A → a) → a, and so on. On
occasion we may do the same for AB or ABB . For universal implication in general we
may write ∀xAB or ∀x(AB) as alternates for ∀x(A → B).

We write A[p] for formula contexts, where p is a proposition letter to hold substitution
places. Substitution A[B] is the result of replacing all occurrences of p by formula B.
We restrict ourselves to substitution cases where no free variable of B becomes bound
after substitution for p in A[p], if necessary after renaming bound variables of A[p].

Proposition 3.1 (Substitution). Let D[p] be a context with all bound variables distinct

from the free variables of A, B, and C. Then A ∧ B ⊢ C plus A ∧ C ⊢ B implies

5

A ∧ D[B] ⊢ D[C]. In particular we have B ≡ C implies D[B] ≡ D[C], and we have

relative meet substitution A ∧D[A ∧B] ≡ A ∧D[B].

Proof. By induction on the complexity of D[p], see the proof of [Ru98, Proposition 4.3].
There is a minor difference with the induction step for existential quantification because
of our inclusion of the existence predicate Ex. Suppose D[p] equals ∃xE[p] with x
not free in A, B or C, possibly after renaming this bound variable. By induction we
have A ∧ E[B] ⊢ E[C], so also A ∧ E[B] ∧ Ex ⊢ E[C] ∧ Ex ⊢ ∃xE[C]. Thus
A ∧ ∃xE[B] ⊢ ∃x(A ∧ E[B]) ⊢ ∃xE[C].

We define positive and negative occurrences of p in A[p] in the usual way.

Proposition 3.2. Let D[p] be a context with all bound variables distinct from the free

variables of A and B. If p occurs only in positive places in D[p], then D[A∧B] ⊢ D[A].
If p occurs only in negative places in D[p], then D[A] ⊢ D[A ∧B].

Proof. Both statements are proved simultaneously by induction on the complexity of
D[p] by a straightforward variation on the proof of [Ru98, Proposition 4.3].

A sequent theory is a theory axiomatizable by a set of entailments A ⊢ B. For
example IQC-E and CQC-E are sequent theories. Following [Ru98, page 33], a sequent
theory Γ is well-formed if for all finite lists of sentences ∀x(A0 → B0), ∀x(A1 → B1),
. . . , ∀x(An → Bn) and formula A where no free variable of x occurs in A, if

Γ ∪ {A1 ∧ Ex ⊢ B1, . . . , An ∧ Ex ⊢ Bn} proves A0 ∧ Ex ⊢ B0

then Γ proves

∀x(A ∧A1 → B1) ∧ . . . ∧ ∀x(A ∧An → Bn) ⊢ ∀x(A ∧A0 → B0)

Proposition 3.3. Sequent theories are well-formed.

Proof. This is [Ru98, Corollary 4.14], a proof by induction on the complexity of deriva-
tions, where essentially the rules need a ‘formalization’. One illustration: Suppose no
variable of y is free in A. Since A ∧B ∧Ey ⊢ A ∧B, we have A ⊢ ∀y(B → (A ∧B)).
So ∀xy((A ∧ B) → C) ∧ A ∧ Ex ⊢ ∀y((A ∧ B) → C) ∧ A ∧ Ex ⊢ ∀y(B → C). Thus
Basic Predicate Logic proves

∀xy((A ∧B) → C) ⊢ ∀x(A → ∀y(B → C)) no variable of y free in A

Other rules of BQC-E can be similarly formalized.

Letter p occurs only formally in A[p] if all occurrences of p are inside universal
implication subformulas. In that case A[p] is called a formal context of p. Context A[p]
is called a proposition logical context if A[p] is built from p and formulas without p using
only ∧, ∨, and →.

Proposition 3.4. Let D[p] be a formal proposition logical context of p. Then

(A ↔ B) ∧D[A] ⊢ D[B]

If C[p] is a proposition logical context of p, then A ↔ B ⊢ C[A] ↔ C[B].

Proof. See [Vi81, page 159] and [ArRu98, Proposition 2.5]. The particular case follows
with D[p] equal to C[A] ↔ C[p].

Proposition 3.4 has further extensions to predicate logic. For example:

Proposition 3.5. Let Axz and Bxz be formulas with all free variables among xz, and

D[p] be a context with all free variables among xy and with p not in the range of quantified

variables from among xz. Lists x, y, and z are pairwise disjoint. Then

6

∀xy(Axz ↔ Bxz) ⊢ ∀xy(D[Axz] ↔ D[Bxz])

Proof. Suppose c is a list of new constant symbols and Axc∧Ex ≡ Bxc∧Ex. We may
suppose that no variable in z occurs in Axc or Bxc or D[p], if necessary after renaming
of bound variables. By Proposition 3.1 we have D[Axc∧Ex] ≡ D[Bxc∧Ex]. So with
Proposition 3.3 we have ∀xy(Axc ↔ Bxc) ⊢ ∀xy(D[Axc ∧ Ex] ↔ D[Bxc ∧ Ex]) ≡
∀xy((D[Axc ∧ Ex] ∧ Ex) ↔ (D[Bxc ∧ Ex] ∧ Ex)) ≡ ∀xy(D[Axc] ↔ D[Bxc]). We
may suppose that the variables in z do not occur in the proofs. Replacing c by z gives
a proof for ∀xy(Axz ↔ Bxz) ⊢ ∀xy(D[Axz] ↔ D[Bxz]).

Next a few elementary properties of quantifiers. Boldface lists x may have length 0,
so may be empty. In such cases ∀x and ∃x are vacuous, and Ex is ⊤. Explicit variable
cases like ∀x or ∃x or Ex are not vacuous.

Proposition 3.6. We have

K1.

∀x(B → C) ⊢ ∀x(A → BC) and

∀x(A → B) ⊢ ∀x((A ∧ C) → (B ∧ C)) and

∀x(A → B) ⊢ ∀x(BC → AC)

K2. ∀xy(A → B) ≡ ∀x(∃yA → B) no variable in y free in B

Proof. Case K1. First entailment: ∀x(B → C)∧A∧Ex ⊢ ((B∧Ex) → C)∧A∧Ex ⊢
B → C. Second entailment: ∀x(A → B) ⊢ ∀x((A ∧ C) → B) ∧ ∀x((A ∧ C) → C).
Third entailment: ∀x(A → B) ∧BC ∧ Ex ⊢ ((A ∧ Ex) → B) ∧BC ∧ Ex ⊢ AC .

Case K2. The nontrivial direction, ∀x(∃yA → B) ⊢ ∀xy(∃yA → B) ∧ ∀xy(A →
∃yA) ⊢ ∀xy(A → B).

Our predicate logic allows for structures without element, still an uncommon practice
since in classical predicate logic CQC there is no need for empty structures. So we use
extra caution with statements that may require existence. Sentence ∃x⊤ corresponds
with structures that have an element. The following proposition is an illustration.

Proposition 3.7. We have

K3. ∃xy⊤ ≡ ∃z⊤ and ∀x⊤aa ≡ (∃x⊤a)a

K4. ∃x a ⊢ a and a ∧ ∃x⊤ ≡ ∃x a

K5.
A ∧ ∃y⊤ ⊢ B

∃xA ⊢ B
x has positive length, and none free in B

K6. ∃x⊤ ∧ ∀y(B → C) ⊢ ∃y(B → C)

Proof. Case K3. Ex ∧ E y ∧ ⊤ ⊢ Ex ∧ ∃y⊤ ⊢ ∃xy⊤. Substitution of z for x and y
gives E z ∧ ⊤ ⊢ ∃xy⊤. Thus ∃z⊤ ⊢ ∃xy⊤. And so on, any nonempty sequence of
variables works. The second equivalence follows from K2.

Case K4. Easy.
Case K5. We may suppose y is a new variable. We have A ∧ Exy ⊢ A ∧ ∃y⊤.

Substitute one of the variables of x for y.
Case K6. Ey ∧ ∀y(B → C) ⊢ Ey ∧ (B → C) ⊢ ∃y(B → C). So ∃x⊤ ∧ ∀y(B →

C) ⊢ ∃y⊤ ∧ ∀y(B → C) ≡ ∃y(∀y(B → C)) ⊢ ∃y(B → C).

Proposition 3.8. We have

K7. ∀x(⊤ → A) ∧ ∀xAaa ≡ ∀x(⊤ → A) ∧ ∀x⊤aa equivalently

∀x(⊤ → A) ∧ (∃xAa)a ≡ ∀x(⊤ → A) ∧ (∃x⊤a)a

7

K8. ∀xAaaa ≡ ∀xAa ∧ ∀x⊤aa equivalently

(∃xAaa)a ≡ (∃xA)a ∧ (∃x⊤a)a ≡ (∃x(A ∨ ⊤a))a

K9. ∀xAaaaa ≡ ∀xAaa equivalently

(∃xAaaa)a ≡ (∃xAa)a

Proof. Case K7. From left to right follows with ⊢ ∀x(⊤a → Aa). From right to left, by
K1 we have ∀x(⊤ → A) ⊢ ∀x(Aa → ⊤a).

Case K8. From right to left, with K1 we get ∀xAa ∧ ∀x⊤aa ⊢ ∀x(Aaa → ⊤a) ∧
∀x⊤aa ⊢ ∀xAaaa. Left to right: First, with ⊢ ∀x(⊤a → Aaa) we get ∀xAaaa ⊢
∀x⊤aa ⊢ ∀x(A → (A ∧ ⊤aa)). Second, with ⊢ ∀x((A ∧ ⊤aa) → Aaa) we get
∀xAaaa ⊢ ∀x (A ∧ ⊤aa)a. Thus ∀xAaaa ⊢ ∀xAa.

Case K9. Substitute A 7→ Aa in K8.

The following are proposition logical immediate consequences of Proposition 3.8.

(⊤ → A) ∧Aaa ≡ (⊤ → A) ∧ ⊤aa so also
A ⊢ ⊤aa exactly when A ⊢ Aaa

Aaaa ≡ Aa ∧ ⊤aa ≡ (A ∨ ⊤a)a

Aaaaa ≡ Aaa

Proposition 3.9. We have

K10. ∀x (A ∧B)a ⊢ ∀x(A → Ba) ⊢ ∀x((A ∧B) → ⊤a)

K11. ∀x (A∧B)aa ≡ ∀xAaa ∧ ∀xBaa ≡ ∀x (A → Ba)a ≡ ∀x ((A∧B) → ⊤a)a

K12. A ⊢ ∀xAaa plus B ⊢ ∀xBaa implies A ∨B ⊢ ∀x (A ∨B)aa

K13. ∀xAaa ∧ ∀x (B ∨ C)aa ≡ ∀x ((A ∧B) ∨ (A ∧ C))aa

K14. A ∧ ∀xAa ⊢ A ∧ ∀x⊤a so ∀x⊤a ⊢ A implies A ∧ ∀xAa ≡ ∀x⊤a

K15. ∀x (A ∨Aa)a ≡ ∀x⊤a

K16. ∀xAaaa∧∀xBaaa ≡ ∀x (A∨B)aaa ≡ ∀x (Aaa∨Baa)a ≡ ∀x (A∨B∨⊤a)a

so ∀x (Aaa ∨Baa)aa ≡ ∀x (A ∨B)aa

K17. ∀x((Aaa ∨Baa) → Ca) ≡ ∀x((A ∨B)aa → Ca)

K18. ∀x(A → C) ∨ ∀x(A → B) ⊢ ∀x(A → (C ∨B))

so ∀x (A → (C ∨B))a ⊢ ∀x ((A → C) ∨ (A → B))a ⊢ ∀x ((A → C) ∨B)a

K19. ∀x (A → (a ∨B))a ≡ ∀x (Aa ∨B)a ≡ ∀x (Aa ∨ (a ∨B))a

K20. ∀x (A → (a ∨B))a ≡ ∀x (Aaa → Baa)a

Proof. Case K10. First entailment, use ∀x (A∧B)a∧A∧Ex ⊢ (A∧B)a∧A∧Ex ⊢ Ba.
Second entailment, use ⊢ ∀x((A ∧B) → A) and ⊢ ∀x(Ba → (A ∧B)a).

Case K11. In K10, by setting x to length 0 we get (A → Ba) ⊢ ((A ∧ B) → ⊤a),
and so on. So the schemas of K10 imply ⊢ ∀x((A → Ba) → ((A ∧ B) → ⊤a)) and so
on. The right to left entailments between first, third, and fourth formulas follow from
K10. From first to second, use ⊢ ∀x(Aa → (A ∧ B)a) and ⊢ ∀x(Ba → (A ∧ B)a).
From second to third: ∀xAaa ⊢ ∀x⊤aa and ∀xAaa ∧ ∀xBaa ∧ (A → Ba) ∧ Ex ⊢
Aaa ∧ Baa ∧ (A → Ba) ∧ Ex ⊢ ⊤a. From first to fourth: ∀x (A ∧ B)aa ⊢ ∀x⊤aa ⊢
∀x(((A ∧B) → ⊤a) → (A ∧B)a).

Case K12. We have ⊢ ∀x((A ∨B)a → Aa) and ⊢ ∀x((A ∨B)a → Ba).
Case K13. By K11 we have ∀xAaa ∧ ∀x (B ∨ C)aa ≡ ∀x (A ∧ (B ∨ C))aa.

8

Case K14. Immediate from Proposition 3.1.
Case K15. We have ∀xAaa ∧ ∀xAa ⊢ ∀x (Aa ∧ Ex)a ∧ (A ∧ Ex)a ⊢ ∀x (Ex)a ≡

∀x⊤a.
Case K16. ∀xAaaa ∧ ∀xBaaa ≡ ∀x (Aa ∧ Ba)aa ≡ ∀x (Aa ∧ Ba)aaaa. See K8 and

K9 and K11.
Case K17. Aaa ∨ Baa ⊢ (A ∨ B)aa implies the right to left direction. Conversely,

∀x((Aaa ∨Baa) → Ca) ⊢ ∀x((Aaa ∨Baa)aa → Caaa) ⊢ ∀x((A ∨B)aa → Ca).
Case K18. Immediate from Proposition 3.2.
Case K19. First equivalence, difficult direction: ∀x (Aa ∨ B)a ≡ ∀xAaa ∧ ∀xBa ⊢

∀x ((A → (a ∨ B)) ∧ (a ∨ B)a)a ∧ ∀xBa ≡ ∀x ((A → (a ∨ B)) ∧ aa ∧ Ba)a ∧ ∀xBa ≡
∀x (A → (a∨B))a∧∀xBa. The second equivalence follows from the first with substitution
B 7→ (a ∨B).

Case K20. With K19 and K16 we have ∀x (A → (a ∨ B))a ≡ ∀x (Aa ∨ B)a ≡
∀x (Aa ∨ B ∨ ⊤a)a ≡ ∀x (Aaaa ∨ Baa)a ≡ ∀x (Aaa → (a ∨ Baa))a ≡ ∀x (Aaa →
Baa)a.

Here are some proposition logical consequences of Proposition 3.9.

(A ∧B)a ⊢ A → Ba ⊢ (A ∧B) → ⊤a

(A ∧B)aa ≡ Aaa ∧Baa ≡ (A → Ba)a ≡ ((A ∧B) → ⊤a)a

A ⊢ Aaa plus B ⊢ Baa implies A ∨B ⊢ (A ∨B)aa

Aaa ∧ (B ∨ C)aa ≡ ((A ∧B) ∨ (A ∧ C))aa

A ∧Aa ⊢ A ∧ ⊤a so also ⊤a ⊢ A implies A ∧Aa ≡ ⊤a

(A ∨Aa)a ≡ ⊤a so also (A ∨Aa)aa ≡ ⊤aa

Aaaa ∧Baaa ≡ (A ∨B)aaa ≡ (Aaa ∨Baa)a ≡ (A ∨B ∨ ⊤a)a so
(Aaa ∨Baa)aa ≡ (A ∨B)aa

(Aaa ∨Baa) → Ca ≡ (A ∨B)aa → Ca

(A → C) ∨ (A → B) ⊢ (A → (C ∨B)) so
(A → (C ∨B))a ⊢ ((A → C) ∨ (A → B))a ⊢ ((A → C) ∨B)a

(A → (a ∨B))a ≡ (Aa ∨B)a ≡ (Aa ∨ (a ∨B))a ≡ (Aaa → Baa)a

Proposition 3.10. We have

K21. A ∧ Ex ⊢ (A ∧ Ex)aa implies ∃xA ⊢ (∃xA)aa

K22. x not free in A implies Aaa ∧ (∃xB)aa ≡ (∃x(A ∧B))aa

K23. (∃xAaa)a ≡ (∃x(A ∨ ⊤a))a and (∃xAaa)aa ≡ (∃xA)aa

K24. ∃xAaa ⊢ (∃xA)aa and ∃xAaa → Ca ≡ (∃xA)aa → Ca

Proof. Case K21. (A ∧ Ex)aa ⊢ (∃xA)aa.
Case K22. Aaa ∧ (∃xB)aa ≡ (A ∧ ∃xB)aa ≡ (∃x(A ∧B))aa.
Case K23. The first equivalence is K8. So (∃xAaa)aa ≡ (∃xA ∨ ∃x⊤a)aa. Now

(∃xA)a ⊢ ⊤ gives ∃x⊤a ⊢ (∃xA)aa. Thus with K16 we have (∃xA ∨ ∃x⊤a)aa ≡
((∃xA)aa ∨ (∃x⊤a)aa)aa ≡ (∃xA)aa.

Case K24. First, Aaa∧Ex ⊢ Aaa∧⊤aa∧Ex ⊢ Aaa∧ (Ex)aa ⊢ (∃xA)aa. Second,
∃xAaa → Ca ⊢ (∃xAaa)aa → Caaa ⊢ (∃xAaa)aa → Ca ≡ (∃xA)aa → Ca.

Proposition 3.11. We have

K25. ∀x(Aaa → Baa) ≡ ∀x((Ba ∧ ⊤aa) → Aa)

K26. ∀x (A → B)aa ∧ ∀xBa ⊢ ∀xAa

K27. ∀x (A → B)aa ⊢ ∀x (Aaa → Baa)aa

but (Aaa → Baa)aa 0 (A → B)aa, not even over IQC

9

Proof. Case K25. ∀x(Aaa → Baa) ⊢ ∀x(Baaa → Aaaa) ≡ ∀x((Ba ∧ ⊤aa) → Aa) ⊢
∀x(Aaa → (Ba ∧ ⊤aa)a) ≡ ∀x(Aaa → Baa).

Case K26. ∀x (A → B)aa∧∀xBa ⊢ ∀x (A → (a∨B))aa∧∀xBa ≡ ∀x (Aa∨B)aa∧
∀x Ba ≡ ∀x (Aaa ∧Ba)a ∧ ∀xBa. We have

∀x (Aaa ∧Ba)a ∧ ∀xBa ⊢
∀x (Aaa ∧Ba)a ∧ ∀x(⊤ → Ba) ⊢
∀x (Aaa ∧Ba)a ∧ ∀x(Aaa → (Aaa ∧Ba))

So we can continue with equivalence ∀x (Aaa∧Ba)a∧∀xBa ≡ ∀xAaaa∧∀xBa ⊢ ∀xAa.
Another proof: ∀x(A → B) ∧ ∀xBa ⊢ ∀xAa, so ∀x (A → B)aa ∧ ∀xBaaa ⊢ ∀xAaaa.
Thus ∀x (A → B)aa ∧ ∀xBa ⊢ ∀x (A → B)aa ∧ ∀x⊤aa ∧ ∀xBa ⊢ ∀xAaaa ⊢ ∀xAa.

Case K27. The entailment follows from K26 and K9 and K1 with (A → B)aa∧Aaa ⊢
Baa and (Aaa → Baa)a ⊢ (A → B)aaa and ∀x (A → B)aa ≡ ∀x (A → B)aaaa. For the
counterexample set A = a and B = ⊥. So show (⊤a → ⊤a)aa 0 (a → ⊥)aa, which over
IQC is equivalent to 0 (¬a)aa ≡ (¬¬a) → a. This follows from a two-node reflexive
transitive Kripke model.

Some proposition logical consequences of Proposition 3.11.

Aaa → Baa ≡ (Ba ∧ ⊤aa) → Aa

(A → B)aa ∧Ba ⊢ Aa

(A → B)aa ⊢ (Aaa → Baa)aa

Proposition 3.12. We have

K28. (∀x(A → B))aa ⊢ ∀x (A → B)aa

K29. (∀x (A → B)aa)aa 0 (∀x(A → B))aa, not even over IQC

K30. ∀x (A → Baa)aa ⊢ ∀x(A → Baa)

K31. (∀x (A → Baa)aa)a ≡ (∀x(A → Baa))a

Proof. Case K28. We have (∀x(A → B))aa ⊢ ⊤aa and (∀x(A → B))aa ∧ (A →
B)a ∧ Ex ⊢ (A → B)aa ∧ (A → B)a ∧ Ex ⊢ ⊤a. So (∀x(A → B))aa ⊢ ∀x((A →
B)a → ⊤a) ≡ ∃x(A → B)a → ⊤a. Thus (∀x(A → B))aa ⊢ ∀x (A → B)aa.

Case K29. Consider the reflexive transitive Kripke model A for IQC with as un-
derlying poset a linearly ascending list of nodes α1, α2, α3, . . . with domains D(αn) =
{1, 2, 3, 4, , . . . , n} and αn
 Q(m) exactly when n > m. Set A = ⊤ and B = Q(x) and
a = ⊥. Then A
 ∀x¬¬Q(x) and A
 ¬∀xQ(x).

Case K30. ∀x (A → Baa)aa ∧A∧Ex ⊢ (A → Baa)aa ∧A∧Ex ⊢ (⊤ → Baa)aa ≡
(⊤ → (a ∨Baa))aa ≡ (⊤a ∨Baa)aa ≡ Baaaa ≡ Baa.

Case K31. Write X = ∀x (A → Baa)aa and Y = ∀x(A → Baa). With K28 and
K30 we have Y aa ⊢ X ⊢ Y . So Xa ⊢ Y aaa ⊢ Y a ⊢ Xa.

A two-node irreflexive Kripke model shows that ⊤ 0 ⊤aa. So case K30 is strictly
one way (set A equal to Baa). Some proposition logical consequences of Proposition
3.12.

(A → Baa)aa ⊢ (A → Baa) even (A → Baa)aa ∧A ≡ Baa ∧A
(A → Baa)aaa ≡ (A → Baa)a

10

4 Kolmogorov and Kuroda Translations

The Kolmogorov translation of [Ko25] is for an embedding of Classical Predicate Logic
CQC into Intuitionistic Predicate Logic IQC. Our translation includes an embedding
into Basic Predicate Logic BQC-E. Kolmogorov replaced each subformula A by ¬¬A =
(A → ⊥) → ⊥. We broaden this by replacing the subformulas by (A → a) → a,
also written as Aaa. There is some connection with the Friedman Dragalin translation
A 7→ A · a, definable by replacing all atoms P , which includes ⊤ and ⊥, by (a ∨ P).

Our Kolmogorov translation A 7→ ka(A), or simply k(A), is inductively defined by

k(P) := P aa for atoms P

k(A ∧B) := (k(A) ∧ k(B))aa

k(A ∨B) := (k(A) ∨ k(B))aa

k(∃xA) := (∃x k(A))aa

k(∀x(A → B)) := (∀x (k(A) → k(B))aa)aa

Since ⊤, ⊥, and a are atoms, we have k(⊤) = ⊤aa and k(⊥) ≡ k(a) ≡ ⊤a. Similarly,
k(Ex) ≡ (Ex)aa. Obviously ⊤a ⊢ k(A) ⊢ ⊤aa and k(A)aa ≡ k(A), and k(A · a) ≡ k(A) ·
a ≡ k(A) since (aaa ∨P aa)aa ≡ (a∨P)aa ≡ P aa. Positive occurrences of subformulas
are mapped to positive occurrences, and negative occurrences of subformulas are mapped
to negative occurrences. Formulas A and k(A) have the same free variables, and k(A)[y/t]
equals k(A[y/t]). With K23 we have k(∃x∃yA) = (∃x k(∃yA))aa = (∃x(∃y k(A))aa)aa ≡
(∃xy k(A))aa and so on. So k(∃xA) ≡ (∃x k(A))aa for all x.

We defined k(A → B) essentially equal to (k(A) → k(B))aaaa, which by K9 is
equivalent to (k(A) → k(B))aa. More generally, for universal implication there is some
ambiguity in what it means to replace each subformula A by Aaa. Is ∀x(A → B) a
‘double’ formula where the aa substitution should be applied twice as done above, or is
it a single construction where the aa substitution should be applied once? The following
Proposition shows that the two versions are equivalent.

Proposition 4.1. k(∀x(A → B)) ≡ (∀x(k(A) → k(B)))aa.

Proof. By k(B) ≡ k(B)aa and K31.

The following function is based on the one in [Ku51]. The Kuroda translation A 7→
ra(A), or simply r(A), is defined by r(A) := ua(A)

aa with u = ua inductively defined
by

u(P) := (a ∨ P) for atoms P

u(A ∧B) := (u(A) ∧ u(B))

u(A ∨B) := (u(A) ∨ u(B))

u(∃xA) := (a ∨ ∃xu(A))

u(∀x(A → B)) := (∀x (u(A) → u(B))aa)

If a = ⊥ as in Kuroda’s original, then the a∨ can be dropped in the definitions of u(P)
and u(∃xA). Following the proof of Proposition 4.3, we consider the equivalent variant
where we define u(A → B) := (u(A) → u(B)) when x is empty in the ∀ definition step.
We show below that the Kuroda translation is essentially the same as the Kolmogorov
translation.

Proposition 4.2. a ⊢ u(A) for all A.

Proof. A trivial proof by induction on the complexity of A. For example a ⊢ ∀xAa

covers universal implication.

11

Rule u(∃xA) := (a ∨ ∃xu(A)) needs the extra a∨, for otherwise Proposition 4.2
fails for ∃xu(P) ≡ ∃x(a ∨ P). In general we only have ∃x a ≡ a ∧ ∃x⊤ ⊢ ∃xu(A).
Example derivation: From a ⊢ u(A) we only get a ∧ Ex ⊢ u(A) ∧ Ex ⊢ ∃xu(A). As
we mentioned immediately before Section 3, if we remove ℓ and its axioms from BQC-E
and add ⊢ Ex, we essentially get BQC of [Ru98]. In that case we don’t need a∨ and can
define u(∃xA) := ∃xu(A).

We have r(A)aa ≡ r(A), and r(A · a) ≡ r(A) · a ≡ r(A) and u(∃xA) ≡ (a∨ ∃xu(A)).
Positive occurrences of subformulas are mapped to positive occurrences, and negative
occurrences of subformulas are mapped to negative occurrences. Formulas A and r(A)
have the same free variables, and r(A)[y/t] equals r(A[y/t]).

Proposition 4.3. We have

K32. k(P) ≡ r(P) for all atoms P even P a ≡ u(P)a

K33. k(A) ≡ r(A′) plus k(B) ≡ r(B′) implies k(A ∧B) ≡ r(A′ ∧B′)

K34. k(A) ≡ r(A′) plus k(B) ≡ r(B′) implies k(A ∨B) ≡ r(A′ ∨B′)

K35. k(A) ≡ r(A′) implies k(∃xA) ≡ r(∃xA′)

K36. k(A) ≡ r(A′) plus k(B) ≡ r(B′) implies k(∀x(A → B)) ≡ r(∀x(A′ → B′))

K37. k(A) ≡ r(A) for all A

Proof. Case K32. P a ≡ (a ∨ P)a.
Case K33. k(A ∧ B) ≡ k(A) ∧ k(B) ≡ r(A′) ∧ r(B′) = u(A′)aa ∧ u(B′)aa ≡

(u(A′) ∧ u(B′))aa = r(A′ ∧B′).
Case K34. With K16 we have k(A ∨B) = (k(A) ∨ k(B))aa ≡ (r(A′) ∨ r(B′))aa =

(u(A′)aa ∨ u(B′)aa)aa ≡ (u(A′) ∨ u(B′))aa = r(A′ ∨B′).
Case K35. With K23 and schema (a∨X)a ≡ Xa we have k(∃xA) = (∃x k(A))aa ≡

(∃x r(A′))aa ≡ (∃xu(A′))aa ≡ (a ∨ ∃xu(A′))aa = (u(∃xA′))aa = r(∃xA′).
Case K36. With Proposition 4.2 and K20 we have k(∀x(A → B)) ≡ (∀x (u(A′)aa →

u(B′)aa)aa)aa ≡ (∀x (u(A′) → u(B′))aa)aa = r(∀x(A′ → B′)).
Case K37. By induction on the complexity of A.

We stay slightly closer to Kuroda’s original version if we separately define u(A →
B) := (u(A) → u(B)) when x is empty in the ∀ definition step. With this modification
we get k(A → B) ≡ (k(A) → k(B))aaaa ≡ (k(A) → k(B))aa ≡ (u(A′)aa →
u(B′)aa)aa ≡ (u(A′) → u(B′))aa = r(A′ → B′) as alternate special case of K36.
With this inessential modification, Kuroda’s translation with a = ⊥ is a predicate logic
extension of Glivenko’s proposition logical translation of [Gl29]. So with a = ⊥, and for
all formulas A without any occurrence of ∀x with non-empty x, we have r(A) ≡ ¬¬A.

5 K Embeddings

The Kolmogorov and Kuroda translations are essentially equivalent. So we need only
one version of an embedding of Classical Predicate Logic into Basic Predicate Logic.

For lists ~A = (A1, A2, . . . , An) define k(~A) := (k(A1), k(A2), . . . , k(An)). Define
~A ⊢k B by k(~A) ⊢ k(B). We define ⊢k A by ⊤ ⊢k A. We define A ≡k B by
k(A) ≡ k(B).

Let BQCa-E be the theory axiomatizable by the addition of schema Aaa ⊢ A to
BQC-E. Over BQCa-E letter a fulfills a role of ⊥ since a ⊢ Aaa ⊢ A for all A. Let
CQCa-E be the theory axiomatizable by the addition of a ⊢ ⊥ to CQC-E.

Proposition 5.1. CQCa-E equals BQCa-E.

12

Proof. We only prove the less easy direction from BQCa-E. First, a ⊢ ⊤a ≡ ⊥aa ⊢ ⊥,
so a ≡ ⊥. Second, (⊤ → A) ∧ Aa ⊢ ⊤a ≡ aaa ⊢ a, so ⊤ → A ⊢ Aaa ⊢ A. So
BQCa-E proves intuitionistic logic IQC-E with a ⊢ ⊥ and schema ¬¬A ⊢ A. Thus also
CQCa-E.

Map A 7→ k(A) is a logical embedding of CQCa-E into BQC-E in a strong sense. We
first show that ⊢k obeys all the axioms and rules of BQC-E of Section 2 plus the schema
Aaa ⊢k A. After that we give a simple proof that this completely axiomatizes ⊢k.

Proposition 5.2. Aaa ≡k A.

Proof. By Proposition 4.1 we have k(Aaa) = (k(Aa) → k(a))aa ≡ ((k(A) → k(a))aa →
⊤a)aa ≡ ((k(A) → ⊤a)aa → ⊤a)aa. With a ⊢ ⊤a and K19 we have (k(A) → ⊤a)a ≡
(k(A)a ∨ ⊤a)a ≡ k(A). So k(Aaa) ≡ (k(A)a → ⊤a)aa ≡ (k(A)aa ∨ ⊤a)aa ≡
k(A)aaaa ≡ k(A).

Next we show that ⊢k respects all axioms and rules of BQC-E. We may skip some
trivially verifiable ones. Many ‘bookkeeping’ rules follow from k(A∧B) ≡ k(A)∧k(B),

which often allows us to ignore the ~D part in our proofs. We obviously have

A ⊢k A and
~D ⊢k B

~D,A ⊢k B
and

~D,A ⊢k B ~D,B ⊢k C

~D,A ⊢k C

and

~D,A,B ⊢k C

~D, A ∧B ⊢k C
and

~D, A ∧B ⊢k C

~D,A,B ⊢k C

and

~D ⊢k B

~D[x/t] ⊢k B[x/t]
no variable of term t becomes bound

We have A ⊢k ⊤ since k(A) ≡ k(A)aa ⊢ ⊤aa. We have ⊥ ⊢k A since k(⊥) = ⊥aa ⊢
k(A)aa ≡ k(A).

Proposition 5.3. We have

K38.
~D ⊢k A ∧B

~D ⊢k A
and

~D ⊢k A ∧B

~D ⊢k B
and

~D ⊢k A ~D ⊢k B

~D ⊢k A ∧B

K39.
~D, A ∨B ⊢k C

~D,A ⊢k C
and

~D, A ∨B ⊢k C

~D,B ⊢k C
and

~D,A ⊢k C ~D,B ⊢k C

~D, A ∨B ⊢k C

Proof. Case K38. k(C) ⊢ k(A) plus k(C) ⊢ k(B) exactly when k(C) ⊢ k(A)∧k(B) ≡
k(A ∧B).

Case K39. By K17 we have k(A) ∨ k(B) ⊢ k(C) exactly when k(A ∨ B) ≡
(k(A) ∨ k(B))aa ⊢ k(C). Use that k(D) ∧ k(A ∨B) ≡ k((D ∧A) ∨ (D ∧B)), see K13
and K16.

The following are all obvious:

P (x) ⊢k Ex

Ex ⊢k x = x and A ∧ x = y ⊢k A[x/y] for atoms A
E f(x) ⊢k Ex

E ℓ ⊢k ⊥ (or schema E ℓ ⊢k A)

Proposition 5.4. We have

13

K40.
~D, A ∧ Ex ⊢k B

~D, ∃xA ⊢k B
x not free in B, ~D and

~D, ∃xA ⊢k B

~D, A ∧ Ex ⊢k B

K41.
~D, A ∧B ∧ Ex ⊢k C

~D,A ⊢k ∀x(B → C)
variables x not free in A, ~D

Proof. Case K40. First rule: k(D), k(A ∧ Ex) ⊢ k(B) implies k(D) ∧ k(A) ∧ Ex ≡
k(D)∧k(A)∧⊤aa∧Ex ≡ k(D)∧k(A)∧ (Ex)aa∧Ex ⊢ k(B) implies k(D), ∃x k(A) ⊢
k(B) implies k(D), k(∃xA) ⊢ k(B)aa ≡ k(B). Second rule: It suffices to show
k(A ∧ Ex) ⊢ k(∃xA). We have k(A) ∧ Ex ⊢ ∃x k(A), so also k(A) ∧ (Ex)aa ⊢
(∃x k(A))aa = k(∃xA).

Case K41. From k(A) ∧ k(B) ∧ k(Ex) ⊢ k(C) we get k(A) ∧ k(B) ∧ Ex ⊢ k(C).
So with Proposition 4.1 we have k(A) ≡ k(A)aa ⊢ ∀x (k(B) → k(C))aa ≡ k(∀x(B →
C)).

Proposition 5.5. We have

K42.

∀x(A → B) ⊢k ∀xy(A → B) y not free to the left of the entailment and

∀xy(A → B) ⊢k ∀x((A ∧ E y) → B)

K43.

∀x(A → B) ∧ ∀x(B → C) ⊢k ∀x(A → C) and

∀x(A → B) ∧ ∀x(A → C) ⊢k ∀x(A → (B ∧ C)) and

∀x(B → A) ∧ ∀x(C → A) ⊢k ∀x((B ∨ C) → A) and

∀xy(A → B) ⊢k ∀x((A[y/t] ∧ E t) → B[y/t]) no variable of term t becomes

bound in A or B and

∀xy(A → B) ⊢k ∀x(∃yA → B) y not free in B

Proof. Case K42. Second item: With Proposition 4.1 the following suffices: ∀xy(k(A) →
k(B)) ⊢ ∀x((k(A) ∧ E y) → k(B)) ⊢ ∀x((k(A)aa ∧ (E y)aa) → k(B)aa) ≡ ∀x(k(A ∧
E y) → k(B)).

Case K43. All cases are fairly straightforward. The third case for disjunction: With
K20 and K11 we have ∀x (k(B ∨ C) → k(A))aa ≡ ∀x ((k(B) ∨ k(C))aa → k(A))aa ≡
∀x ((k(B)∨k(C)) → k(A))aa ≡ ∀x ((k(B) → k(A))∧(k(C) → k(A)))aa ≡ ∀x (k(B) →
k(A))aa ∧ ∀x (k(C) → k(A))aa. The fourth case follows from K27. For the fifth case for
existential quantification the following suffices: ∀xy(k(A) → k(B)) ⊢ ∀x(∃y k(A) →
k(B)) ⊢ ∀x((∃y k(A))aa → k(B)aa) ≡ ∀x(k(∃yA) → k(B)).

Starting from Proposition 5.2 we established that ⊢k is closed under all derivations
of BQCa-E, so with Proposition 5.1 is also closed under all derivations of CQCa-E.

Theorem 5.6. The derivations of ⊢k are exactly those of CQCa-E. There is a CQCa-E

derivation of A ⊢ B from a collection of entailments Ai ⊢ Bi if and only if there is a

BQC-E derivation of k(A) ⊢ k(B) from the collection of entailments k(Ai) ⊢ k(Bi).

Proof. We established that CQCa-E derivations with entailments A ⊢ B imply BQC-E
derivations with the corresponding k(A) ⊢ k(B).

Conversely, CQCa-E has classical predicate logic with a ⊢ ⊥, so over CQCa-E we
have A ≡ k(A) ≡ u(A) for all A. If there is a BQC-E derivation of k(A) ⊢ k(B) from
a collection of entailments k(Ai) ⊢ k(Bi), then over extension CQCa -E ⊇ BQC -E we
have a derivation of A ⊢ B from collection of entailments Ai ⊢ Bi.

14

Note that k(A) ≡ k(k(A)) ≡ k(u(A)). So if k(A) ⊢ k(B) follows from a collection
of entailments Ai ⊢ Bi, then k(A) ⊢ k(B) also follows from collection of entailments
k(Ai) ⊢ k(Bi).

In predicate logic one may prefer to work with the language L of BQC of [Ru98],
without existence predicate Ex, with an inhabited intended domain, and with total
functions. In the case of any predicate logic extending intuitionistic predicate logic IQC
one also prefers universal quantification of form ∀xA. Such a predicate logic can be
embedded into our language L-E. Example: First, employ a straightforward translation
m definable by induction on the complexity of formulas, which essentially replaces ∀xA
by ∀x(⊤ → A). Second, perform the translation we mentioned immediately before
Section 3, that is, replace entailments A ⊢ B by A ∧ Ex ⊢ B, where x is a list of all
free variables that occur in A or B. Third, add axioms ⊢ ∃x⊤ and Ex ⊢ E f(x) for all
function symbols f , as indicated immediately before Section 3.

Theorem 5.7. Let A1, . . . , An, A be a list of formulas over CQC, and x be all free vari-

ables that occur in the list. Set propositional letter a equal to ⊥. Then A1, . . . , An ⊢ A in

CQC if and only if k(m(A1)), . . . , k(m(An)),¬¬Ex ⊢ k(m(A)) over ℓ-free BQC -E∪{⊢
∃x⊤} ∪ {Ex ⊢ E f(x)}f .

Proof. Over BQC-E we have equivalences ∃xA ≡ ∃x(Ex ∧ A) and ∀x(A → B) ≡
∀x((A ∧ Ex) → B). So the translation is equivalent to a standard relativization of
quantifiers, and ⊢ ∃x⊤ guarantees that the intended domain is inhabited. Clearly m(B∧
C) ≡ m(B) ∧m(C) and k(B ∧C) ≡ k(B) ∧ k(C). Finally, apply Proposition 2.1.

The BQC of [Ru98] has no existence predicate Ex or constant symbol ℓ, intended do-
mains have elements, and all functions are total. Entailments A ⊢ B of BQC correspond
with entailments A ∧ Ex ⊢ B of ℓ-free BQC -E ∪ {⊢ ∃x⊤} ∪ {Exi ⊢ E f(x)}f . So

Theorem 5.8. Let A1, . . . , An, A be a list of formulas over CQC. Set propositional

letter a equal to ⊥. Then

A1, . . . , An ⊢ A in CQC
if and only if

k(m(A1)), . . . , k(m(An)),¬¬⊤ ⊢ k(m(A)) in BQC

Condition ¬¬⊤ is redundant when n > 0.

Corollary 5.9 (Generalized Glivenko). Let A and B be formulas without any occurrence

of form ∀x with non-empty x. Then

A ⊢ B in CQC
if and only if

¬¬A ⊢ ¬¬B in BQC

References

[AAR16] Majid Alizadeh, Mohammad Ardeshir, Wim Ruitenburg. Boolean al-

gebras in Visser algebras, Notre Dame Journal of Formal Logic 57 (2016), pp.
141–150.

[ArRu98] Mohammad Ardeshir, Wim Ruitenburg. Basic propositional calculus I,
Mathematical Logic Quarterly 44 (1998), pp. 317–343.

[ArRu20] Mohammad Ardeshir, Wim Ruitenburg. A constructive interpretation of

the logical constants, submitted.

15

[vdB19] Benno van den Berg. A Kuroda-style j-translation, Archive for Mathematical
Logic 58 (2019), pp. 627–634.

[BrRi14] Chad E. Brown, Christine Rizkallah. Glivenko and Kuroda for simple

type theory, The Journal of Symbolic Logic 79 (2014), pp. 485–495.

[Dr79] A.G. Dragalin. Mathematical Intuitionism, Introduction to Proof

Theory, Translations1 of Mathematical Monographs 67, American Mathemati-
cal Society 1988.

[FMS79] Michael Fourman, Chris Mulvey, Dana Scott (editors). Applica-

tions of Sheaves, Lecture Notes in Mathematics 753, Springer-Verlag, 1979.

[Gl29] Valery Glivenko. Sur quelques points de la logique de M. Brouwer, Bulletins
de la classe des sciences 15 (1929), pp. 183–188.

[Hei67] Jean van Heijenoort. From Frege to Gödel, A Source Book in Math-

ematical Logic, 1879–1931, Harvard University Press, 1967.

[Ko25] A.N. Kolmogorov. O printsipe tertium non datur, Mathematičeskǐi Sbornik
32 (1925), pp. 646–667. English translation On the principle of excluded middle,
in: [Hei67, pp. 414–437].

[Ku51] Sigekatu Kuroda. Intuitionistische Untersuchungen der formalistischen Logik,
Nagoya Mathematical Journal 2 (1951), pp. 35–47.

[Ru98] Wim Ruitenburg. Basic predicate calculus, Notre Dame Journal of Formal
Logic 39 (1998), no. 1, pp. 18–46.

[Sc79] D.S. Scott. Identity and existence in intuitionistic logic, in: [FMS79, pp. 660–
696].

[TrvD88] A.S. Troelstra, D. van Dalen. Constructivism in Mathematics, an

Introduction, Volume 1, Studies in Logic and the Foundations of Mathematics
121, North-Holland, 1988.

[Vi81] Albert Visser. A propositional logic with explicit fixed points, Studia Logica
40 (1981), pp. 155–175.

1The original in Russian is from 1979.

16

