A special logic for transitive Kripke models

WIM RUITENBURG wim.ruitenburg@marquette.edu

This is joint work with Mohammad Ardeshir.

1 New BQC-2023 (or BQC-23)

The logical symbols are \top , \bot , $A \land B$, $A \lor B$, $\exists xA$, and $\forall \mathbf{x}(A \to B)$.

A1.
$$\frac{\vec{D}, A, A \Rightarrow B}{\vec{D}, A \Rightarrow B}$$
 $\frac{\vec{D}, A, B \Rightarrow C}{\vec{D}, B, A \Rightarrow C}$ $\frac{\vec{D}, A \Rightarrow B}{A, \vec{D} \Rightarrow B}$

So \vec{D} in $\vec{D} \Rightarrow B$ is essentially a finite set of formulas.

A2.
$$\vec{D}, A \Rightarrow A$$
 $\frac{\vec{D} \Rightarrow B}{\vec{D}, A \Rightarrow B}$ $\frac{\vec{D} \Rightarrow B \quad \vec{D}, B \Rightarrow C}{\vec{D} \Rightarrow C}$

The 'weakening' second rule of A2 makes that finite \vec{D} are not necessary in sequent axioms (below we don't bother to leave such \vec{D} out).

A3.
$$\frac{\vec{D}, A, B \Rightarrow C}{\vec{D}, A \land B \Rightarrow C}$$
 $\frac{\vec{D}, A \land B \Rightarrow C}{\vec{D}, A, B \Rightarrow C}$

So $\vec{D} \Rightarrow B$ and $\bigwedge \vec{D} \Rightarrow B$ are essentially the same for all \vec{D} and B. We may write \vec{D} for $\bigwedge \vec{D}$ whenever convenient.

A4.
$$\vec{D} \Rightarrow A \wedge B \qquad \vec{D} \Rightarrow A \wedge B \qquad \vec{D} \Rightarrow A \wedge B \qquad \vec{D} \Rightarrow A \wedge B$$

A5.
$$\vec{D} \Rightarrow \top$$

A6.
$$\frac{\vec{D}, A \vee B \Rightarrow C}{\vec{D}, A \Rightarrow C} \qquad \frac{\vec{D}, A \vee B \Rightarrow C}{\vec{D}, B \Rightarrow C} \qquad \frac{\vec{D}, A \Rightarrow C \quad \vec{D}, B \Rightarrow C}{\vec{D}, A \vee B \Rightarrow C}$$

A7.
$$\vec{D}, \perp \Rightarrow B$$

A8.
$$\vec{D} \Rightarrow x = x$$
 $\vec{D}, A, x = y \Rightarrow A[x/y]$ for atoms A

A9.
$$\frac{\vec{D} \Rightarrow B}{\vec{D}[x/t] \Rightarrow B[x/t]}$$
 no variable of term t becomes bound

A10.
$$\frac{\vec{D}, A \Rightarrow B}{\vec{D}, \exists xA \Rightarrow B} x \text{ not free in } B, \vec{D}$$
 $\frac{\vec{D}, \exists xA \Rightarrow B}{\vec{D}, A \Rightarrow B}$

The fragment above with restriction to sequents $\vec{D} \Rightarrow B$ of formulas built from the atoms using only \land , \lor , and \exists , is the well-known finite geometric logic.

Implication $A \to B$ is short for the special case $\forall (A \to B)$. Negation $\neg A$ is defined by $A \to \bot$.

A11.
$$\frac{\vec{D}, A \Rightarrow B}{\vec{D} \Rightarrow \forall \mathbf{x}(A \to B)}$$
 variables \mathbf{x} not free in \vec{D}

A12.
$$\vec{D}$$
, $\forall \mathbf{x}(A \to B) \Rightarrow \forall \mathbf{x}y(A \to B) y$ not free left of the sequent arrow

A13.
$$\vec{D}$$
, $\forall \mathbf{x} y (A \to B) \Rightarrow \forall \mathbf{x} (A \to B)$

A14.
$$\vec{D}$$
, $\forall \mathbf{x}(A \to B)$, $\forall \mathbf{x}(B \to C) \Rightarrow \forall \mathbf{x}(A \to C)$

A15.
$$\vec{D}$$
, $\forall \mathbf{x}(A \to B)$, $\forall \mathbf{x}(A \to C) \Rightarrow \forall \mathbf{x}(A \to (B \land C))$

A16.
$$\vec{D}$$
, $\forall \mathbf{x}(B \to A)$, $\forall \mathbf{x}(C \to A) \Rightarrow \forall \mathbf{x}((B \lor C) \to A)$

A17.
$$\vec{D}$$
, $\forall \mathbf{x} y (A \to B) \Rightarrow \forall \mathbf{x} (\exists y A \to B) \ y \text{ not free in } B$

This completes the axiomatization of BQC-2023.

Intuitionistic Predicate Logic IQC-2023 is definable by the addition of schema $\top \to A \Rightarrow A$, which allows one to derive modus ponens $A \land (A \to B) \Rightarrow B$. Classical Predicate Logic CQC-2023 is definable by adding schemas $\top \to A \Rightarrow A$ plus Excluded Middle $\Rightarrow A \lor \neg A$ or, alternatively, by adding the single schema of double negation elimination $\neg \neg A \Rightarrow A$.

Proposition 1.1. A list of derivable entailments over BQC-2023.

$$B1. \vdash A \land (B \lor C) \Leftrightarrow (A \land B) \lor (A \land C)$$

$$B2. \vdash A \land \exists xB \Leftrightarrow \exists x(A \land B) \ x \ not \ free \ in \ A$$

$$B3. \vdash \top \to \bot \Rightarrow \forall \mathbf{x}(A \to B)$$

$$B4. \vdash \forall \mathbf{x}(A \to B) \Leftrightarrow (\exists \mathbf{x}A \to B) \text{ no } x \text{ in } \mathbf{x} \text{ free in } B$$

Proposition 1.2 (Formula substitution). Let \mathcal{L} be a language, p be a new propositional letter, $C[p] \in \mathcal{L}[p]$, and $A, B \in \mathcal{L}$. Then BQC-2023 proves

$$\vec{D}, A \Rightarrow B, \ \vec{D}, B \Rightarrow A \ \vdash \ \vec{D}, \, C[A] \Rightarrow C[B]$$

where no variable that occurs free in both \vec{D} and in A, B becomes bound after substitution of A and B in C[p].

Renaming bound variables.

Proposition 1.3. Let C be a formula in which the variables x and y don't occur free, and neither x nor y becomes bound after substitutions C[z/x] or C[z/y]. Then BQC-2023 proves $D[\exists xC[z/x]] \Leftrightarrow D[\exists yC[z/y]]$, for all contexts D[p].

Proposition 1.4. Let A and B be formulas in which the variables in \mathbf{x} and \mathbf{y} don't occur free, and where no variable in \mathbf{x} or \mathbf{y} becomes bound after substitutions $A[\mathbf{z}/\mathbf{x}]$, $B[\mathbf{z}/\mathbf{x}]$, $A[\mathbf{z}/\mathbf{y}]$, or $B[\mathbf{z}/\mathbf{y}]$. Lists \mathbf{x} , \mathbf{y} , and \mathbf{z} have the same length. Then BQC-2023 proves $D[\forall \mathbf{x}(A[\mathbf{z}/\mathbf{x}] \to B[\mathbf{z}/\mathbf{x}])] \Leftrightarrow D[\forall \mathbf{y}(A[\mathbf{z}/\mathbf{y}] \to B[\mathbf{z}/\mathbf{y}])]$, for all contexts D[p].

1.1 Functional Well-formed Theories

BQC-2023 is the theory of transitive Kripke models similar to how intuitionistic predicate logic IQC-2023 is the theory of reflexive transitive Kripke models. Theories over transitive Kripke models essentially satisfy the extra properties of being functional and well-formed.

Theories are sets of rules generated by sets BQC-2023 \cup Γ , where Γ is a set of rule axioms R of form

$$R := \frac{\vec{D}_1 \Rightarrow B_1 \dots \vec{D}_n \Rightarrow B_n}{\vec{D}_0 \Rightarrow B_0}$$

 $\Gamma \vdash R$ if and only if

$$\Gamma \cup \{\vec{D}_1 \Rightarrow B_1, \ldots, \vec{D}_n \Rightarrow B_n\} \vdash \vec{D}_0 \Rightarrow B_0$$

Define rule $A \times R$ by

$$A \times R := \frac{\vec{D}_1, A \Rightarrow B_1 \dots \vec{D}_n, A \Rightarrow B_n}{\vec{D}_0, A \Rightarrow B_0}$$

Proposition 1.5. Derivable entailments over BQC-2023.

$$B5. \vdash \bot \times R$$

$$B6. \ \top \times R \ +\!\!\!\!+ \ R$$

$$B7. \ A \times (B \times R) \ \dashv \vdash \ (A \wedge B) \times R$$

B8. If variables **z** are not free in rule R, then $A \times R + \exists \mathbf{z} A \times R$

Set of rules Γ is functional if for all rules R and formulas A with only 'new' variables, we have $\Gamma \vdash R$ implies $\Gamma \vdash A \times R$.

Proposition 1.6. Let $\Gamma \cup \{R\}$ be a set of rules such that $\Gamma \vdash R$, and A be a sentence. Then $A \times \Gamma \vdash A \times R$.

Proposition 1.7. A theory Δ is functional if and only if Δ has a functional axiomatization.

Given a rule

$$R := \frac{\vec{D}_1 \Rightarrow B_1 \dots \vec{D}_n \Rightarrow B_n}{\vec{D}_0 \Rightarrow B_0}$$

and list of variables \mathbf{x} , we write $\int_{\mathbf{x}} R$ for sequent

$$\forall \mathbf{x} (\bigwedge \vec{D}_1 \to B_1), \dots, \forall \mathbf{x} (\bigwedge \vec{D}_n \to B_n) \Rightarrow \forall \mathbf{x} (\bigwedge \vec{D}_0 \to B_0)$$

Proposition 1.8. Let R be a rule and \mathbf{xy} be a list of variables. Then $\int_{\mathbf{x}} R \vdash \int_{\mathbf{xy}} R$. If none of the \mathbf{y} are free in the (numerator) suppositions of R, then $\int_{\mathbf{xy}} R \vdash \int_{\mathbf{x}} R$.

We write $^1\int_R S$ for $\int_{\mathbf{x}} S$ if \mathbf{x} equals the free variables of rule R. So $\int_R R + \int_{\mathbf{x}} R$ whenever \mathbf{x} includes all free variables in the (numerator) suppositions of R.

Proposition 1.9. Let $\Gamma \cup \{R\}$ be a set of rules such that $\Gamma \vdash R$. Then $\int \Gamma \vdash \int_R R$.

Set of rules Γ is well-formed if for all rules R and formulas A with only 'new' variables, we have $\Gamma \vdash R$ implies $\Gamma \vdash \int_R (A \times R)$.

Proposition 1.10. Derivable entailments over BQC-2023.

B9.
$$\int_{\mathbf{x}} R + \int_{\mathbf{x}} (\top \times R)$$

B10.
$$\int_{\mathbf{x}} R \vdash A \times \int_{\mathbf{x}} R$$

B11. $\int_{\mathbf{x}} (A \times R) \vdash A \times \int_{\mathbf{x}} R$ whenever the variables \mathbf{x} aren't free in A

Proposition 1.11. A theory Δ is well-formed if and only if Δ has a well-formed axiomatization.

¹ A derivate $(\vec{D} \Rightarrow B)'$ of 'differentiable' sequents $\vec{D} \Rightarrow B$ exists satisfying $(\int_R R)' \dashv \vdash R$, where $\vec{D} \Rightarrow B$ is differentiable when \vec{D}, B is a list of universal implication sentences.

2 Transitive Kripke Models for BQC-2023

A Kripke model \mathfrak{A} consists of the following components.

First, a structure (W, \Box) of a non-empty set of worlds or nodes W with transitive relation \Box . We write \Box for the reflexive closure of \Box .

Given a Kripke model $\mathfrak A$ over $\mathcal L$ with node $k \in W$, classical model $\mathfrak A_k$ has domain A_k , and language $\mathcal L(A_k)$ with new constant symbols. Define classical truth interpretation $\mathfrak A_k \models B$ for sentences $B \in \mathcal L(A_k)$ as usual. Function $f_m^k: A_k \to A_m$ implies a formula translation $B \mapsto B_m^k$ from $\mathcal L(A_k)$ to $\mathcal L(A_m)$. Similarly for rules $R \mapsto R_m^k$.

Forcing $(\mathfrak{A}, k) \Vdash B$ for sentences $B \in \mathcal{L}(A_k)$ is inductively definable by:

```
(\mathfrak{A},k) \Vdash B if and only if \mathfrak{A}_k \models B, for all atomic sentences B \in \mathcal{L}(A_k)
```

 $(\mathfrak{A},k) \Vdash B \land C$ if and only if $(\mathfrak{A},k) \Vdash B$ and $(\mathfrak{A},k) \Vdash C$

 $(\mathfrak{A},k) \Vdash B \lor C$ if and only if $(\mathfrak{A},k) \Vdash B$ or $(\mathfrak{A},k) \Vdash C$

 $(\mathfrak{A},k) \Vdash \exists x C$ if and only if there is $c \in A_k$ such that $(\mathfrak{A},k) \Vdash C[x/c]$

$$(\mathfrak{A},k) \Vdash \forall \mathbf{x}(B \to C)$$
 if and only if for all $m \supset k$ and $\mathbf{c} \in A_m$ we have $(\mathfrak{A},m) \Vdash B_m^k[\mathbf{x}/\mathbf{c}]$ implies $(\mathfrak{A},m) \Vdash C_m^k[\mathbf{x}/\mathbf{c}]$

Proposition 2.1 (Persistence of forcing for sentences). Let $k \sqsubseteq m$ be nodes of a transitive Kripke model \mathfrak{A} , and B be a sentence over $\mathcal{L}(A_k)$. Then $(\mathfrak{A}, k) \Vdash B$ implies $(\mathfrak{A}, m) \Vdash B_m^k$.

Write $k \Vdash$ for $(\mathfrak{A}, k) \Vdash$ if the Kripke model \mathfrak{A} is clear from the context.

With Proposition 2.1 we extend forcing from sentences to formulas $B \in \mathcal{L}(A_k)$ with all free variables among \mathbf{x} by

 $k \Vdash B$ if and only if for all $m \supseteq k$ and $\mathbf{c} \in A_m$ we have $m \Vdash B_m^k[\mathbf{x}/\mathbf{c}]$

Similarly for lists of formulas \vec{D} . The empty list is always forced.

Extend forcing to all sequents by

$$k \Vdash (\vec{D} \Rightarrow B)$$
 if and only if for all $m \supseteq k$ and $\mathbf{c} \in A_m$ we have $m \Vdash \vec{D}_m^k[\mathbf{x}/\mathbf{c}]$ implies $m \Vdash B_m^k[\mathbf{x}/\mathbf{c}]$

So $k \Vdash B$ if and only if $k \Vdash (\Rightarrow B)$.

Proposition 2.2 (Persistence of forcing for sequents). Let $k \sqsubseteq m$ be nodes of a transitive Kripke model \mathfrak{A} , and $\vec{D} \Rightarrow B$ be a sequent over $\mathcal{L}(A_k)$. Then $k \Vdash (\vec{D} \Rightarrow B)$ implies $m \Vdash (\vec{D} \Rightarrow B)_m^k$.

Let R be rule

$$\frac{\vec{D}_1 \Rightarrow B_1 \dots \vec{D}_n \Rightarrow B_n}{\vec{D}_0 \Rightarrow B_0}$$

Define

 $k \Vdash R$ if and only if for all $m \supseteq k$ we have $m \Vdash (\vec{D}_i \Rightarrow B_i)_m^k$ for all i > 0 implies $m \Vdash (\vec{D}_0 \Rightarrow B_0)_m^k$

With Proposition 2.2 we have $k \Vdash (\vec{D} \Rightarrow B)$ as a sequent exactly when $k \Vdash (\vec{D} \Rightarrow B)$ as a rule with empty list of suppositions.

Proposition 2.3 (Persistence of forcing for rules). Let $k \sqsubseteq m$ be nodes of a transitive Kripke model \mathfrak{A} , and R be a rule over $\mathcal{L}(A_k)$. Then $k \Vdash R$ implies $m \Vdash R_m^k$.

Forcing of universal implication sentences corresponds with sequent forcing as follows.

Proposition 2.4. Let k be a node of a transitive Kripke model \mathfrak{A} , and $\forall \mathbf{x}(B \to C)$ be a sentence over $\mathcal{L}(A_k)$. Then $k \Vdash \forall \mathbf{x}(B \to C)$ if and only if $n \Vdash (B_n^k \Rightarrow C_n^k)$ for all $n \supset k$.

Proof. Both statements are equivalent to

For all
$$n \supset k$$
 and $\mathbf{d} \in A_n$ we have $(\mathfrak{A}, n) \Vdash B_n^k[\mathbf{x}/\mathbf{d}]$ implies $(\mathfrak{A}, n) \Vdash C_n^k[\mathbf{x}/\mathbf{d}]$

There is a generalization of Proposition 2.4 to formulas.

6

Proposition 2.5 (Soundness). Let $\Gamma \cup \{R\}$ be a set of rules. Then $\Gamma \vdash R$ implies $\Gamma \Vdash R$.

For each node k of a transitive Kripke model $\mathfrak A$ we define set of rules $\mathrm{Th}(\mathfrak A,k)$ over $\mathcal L(A_k)$ by

$$Th(\mathfrak{A}, k) := \{ R \in \mathcal{L}(A_k) \mid k \Vdash R \}$$

Proposition 2.6. Let k be a node of transitive Kripke model \mathfrak{A} . Then $\mathrm{Th}(\mathfrak{A},k)$ is a functional well-formed theory.

Proposition 2.7 (Completeness). Let $\Gamma \cup \{R\}$ be a set of rules, and Γ be functional and well-formed. Then $\Gamma \Vdash R$ implies $\Gamma \vdash R$.