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Abstract

Heyting’s intuitionistic predicate logic describes very general regu-

larities observed in constructive mathematics. The intended meaning of

the logical constants is clarified through Heyting’s proof interpretation.

A re-evaluation of proof interpretation and predicate logic leads to the

new constructive Basic logic properly contained in intuitionistic logic.

We develop logic and interpretation simultaneously by an axiomatic ap-

proach. Basic logic appears to be complete. A brief historical overview

shows that our insights are not all new.
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1 Introduction

Many of our insights that lead to Basic logic, a proper subsystem of intuition-
istic logic, are similar to insights of scholars, often constructivists, who discuss
aspects of constructive mathematics and logic along lines similar to Heyting’s
intuitionistic logic and proof interpretation. Their contributions include signif-
icant questions about, proposed modifications to, or improved clarifications of
Heyting’s proof interpretation. Some main concerns are the use of hypothetical
statements and the interpretation of implication. Intuitionistic logic itself as
the constructive predicate logic isn’t challenged1.

We conclude that intuitionistic logic itself needs to change before the logical
constants can be constructively justified. Our principal method is (1) a simul-
taneous development of a constructive proof interpretation and a constructive
logic by (2) axiomatic methods. The result is (3) a very general axiom system
of constructions and proofs. A moderate axiom system of constructions and
proofs already suffices to obtain a constructive Basic logic which appears com-
plete by using weak counterexamples in a sense by which intuitionistic logic
may be considered complete. Completeness of the axiom system for Basic

1 In the 1930s Ingebrigt Johansson challenged the use of Ex Falso, which led to the
development of Minimal Logic. In the 1940s George Griss argued that negation, and hence
a whole class of implications, should be banished from intuitionism. The differences with
intuitionistic predicate logic, maybe after restriction to a sublanguage, are not significant.
Hans Freudenthal’s observations in the 1930s didn’t from his side lead to an alternate logic
for intuitionism.
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logic may not extend to completeness of the axiom system for constructions
and proofs. Instead, its generality may be the basis for interesting unintended
interpretations. When compared with intuitionistic logic, the main changes
with Basic logic are a weakening of the rules for implication, and a corre-
sponding weakening of the rules for universal quantification. The main reason
for the need for these changes is that in the context of very general theories we
must allow for (4) an expanding ‘universe’ of constructions and proofs. The
constructively unavoidable possibility of the discovery of further methods of
proof is the principal concern.

We don’t challenge the mathematical value of intuitionistic logic (or of
classical logic, for that matter). We can still ask the question: What is the
place of intuitionistic logic if it isn’t the logic of constructive mathematics (it is
the internal logic of category theory and topos theory)? Another open question
is: What are the mathematical strengths of theories over Basic logic?

The proposition logical fragment of Basic logic is due to Albert Visser, see
[Vi81]. An early discussion about a new proof interpretation is in [Ru93]. The
predicate logic BQC with completeness theorem is in [Ru98].

1.1 Outline

Section 2 Constructive Mathematics
We consider the three most recognized schools of constructive mathematics.
Additionally, we mention the connection between intuitionistic logic and cate-
gory theory, which exists without requiring a constructive interpretation.

Section 3 Mathematical Logic as Applied Mathematics
We sketch the origins of intuitionistic predicate logic. Its axioms should reflect
observed regularities in the use of language by constructivists. From a con-
structivist point of view one may never be able to prove whether the axiom
system is complete, as further methods of proof may be discovered. Weak
counterexamples offer arguments in favor of completeness.

Section 4 Proof Interpretations for Intuitionistic Logic
In reply to concerns about the constructive validity of the axiom system of in-
tuitionistic predicate logic, Heyting developed a proof interpretation, of which
we quote a version dated 1988. Despite the practical acceptance of intuition-
istic predicate logic, there is no generally accepted constructive interpretation
for its logical constants. The main concern involves implication and quantifi-
cation over a totality of constructions. This concern doesn’t apply to the well
known connection between intuitionistic logic and category theory.

Section 5 A General Theory of Constructions and Proofs
We precede constructive predicate logic by a sufficiently detailed proof inter-
pretation so that its most obvious existence and closure rules obtain all of
Basic predicate logic. We neither pretend to have nor need a complete theory
of proofs to obtain this result. With respect to the usual sublanguage without
existence predicate Ex we get the Basic predicate logic BQC, for which there
is a Kripke model completeness theorem in [Ru98]. Weak counterexamples
that respect the possibility of the discovery of further methods of proof offer
constructive arguments in favor of completeness.

Section 6 Conclusion and Remarks
We perceive that constructive type theories along the lines of Martin-Löf ap-
pear to restrict what counts as permitted constructions and proofs in such a
way that modus ponens holds. The restrictions don’t agree with the construc-
tively recognized possibility of an open ended universe of proofs.
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2 Constructive Mathematics

Following Bridges and Richman on [BrRi87, page 1] there are, from a histor-
ical perspective, three major schools of constructive mathematics: Brouwer’s
intuitionism, Markov’s constructivism, and Bishop’s constructive mathemat-
ics. We consider one other source of constructive mathematics and logic for
which the term ‘school’ may not apply, category theory in general, and topos
theory in particular. All four are distinct, and none is contained in all others2.
This contrasts with Section 3: All four agree on Heyting’s intuitionistic logic
as their constructive predicate logic.

As an aside, note that the poorly chosen name ‘Basic logic’ has precedences
in names like ‘Intuitionism’ and ‘Topos’.

2.1 Brouwer, Markov, Bishop

The first fully constructive mathematics and philosophy began with L.E.J.
Brouwer’s 1907 PhD thesis [Br07, He75]. Brouwer condemned a logical foun-
dation of mathematics independent of proper a priori human mental concepts.
For otherwise one builds a linguistic structure definitely distinct from mathe-
matics, see [Br07, pages 179–180]. Brouwer’s PhD student Arend Heyting on
[He78, page 7] wrote that

Brouwer became the founder and defender of the special form of
constructive mathematics which he called intuitionism, a denomi-
nation which was the cause of much misunderstanding.

Brouwer’s intuitionism includes what are called choice sequences, a notion
which he considered intuitively clear. Nonetheless he struggled at times in
dealing with them, see [He78, page 11]. Brouwer’s intuitionism is not consistent
with classical mathematics, see Theorem 3.6 on [BrRi87, page 115].

On [Ku06, page 559] Boris A. Kushner writes

After World War II Markov’s interests turned to axiomatic set the-
ory, mathematical logic, and the foundations of mathematics. He
founded the Russian school of constructive mathematics in the late
1940s and early 1950s. But in private conversations Markov often
said that he had nurtured constructivist convictions for a very long
time, in fact, long before the war.

The objects in A.A. Markov’s constructive mathematics may be considered
as words over finite alphabets. Some Markov constructivists contemplated
broader possibilities. For example, Vladik Kreinovich offers a list of 5 Main
Challenges on [Kr16, page 218], of which the first two are:

• The need to extend constructive mathematics to more complex mathe-
matical objects.

• To be useful for data processing, algorithms must be able to handle
possibly non-constructive data.

On the one hand Markov didn’t recognize Brouwer’s choice sequences in
his own philosophy. On the other he accepted a principle now called Markov’s
Principle. Markov’s constructivism is not consistent with classical mathemat-
ics, see Theorem 6.5 on [BrRi87, page 69].

Arguably the first substantial body of constructive mathematics is in [Bi67]
where, on [Bi67, page ix] Errett Bishop wrote that

2Gödel mentioned on [Go38, Go95, pages 88–89] the haziness of the concept ‘constructive’.

3



This development is carried through with an absolute minimum
of philosophical prejudice concerning the nature of constructive
mathematics. There are no dogmas to which we must conform.
Our program is simple: to give numerical meaning to as much as
possible of classical abstract analysis.

Bishop’s constructivism includes choice principles extending Countable Choice.
His constructivism is consistent with classical mathematics. Bishop’s book is
restricted to constructive analysis. For constructive algebra, see [MRR88].

2.2 Topos Theory

In the early 1960s appeared theorems about categories which, as Johnstone
wrote on [Jo77, page xii],

. . . paved the way for a truly autonomous development of category
theory as a foundation for mathematics.

The development of principal interest to us began with F.W. Lawvere’s [La64],
titled An elementary theory of the category of sets. Once Lawvere turned his
attention to Grothendieck toposes as generalized set theories, a new theory of
the category of sets evolved called (elementary) topos theory. A name which
Johnstone on page [Jo77, page xii], in an earlier context, called “. . . slightly
unfortunate . . . ”. Topos theory is a major part of an autonomous develop-
ment of category theory as a foundation for mathematics. What makes topos
theory also constructive is, that the mathematics done on the inside is in gen-
eral restricted to the rules of intuitionistic logic shared by the three ‘schools’
mentioned before.

Internal topos mathematics is consistent with classical mathematics, but
doesn’t axiomatize any choice principles, not even Countable Choice. An addi-
tional natural number object also has an elementary category theoretic axiom-
atization, as shown by P. Freyd in [Fr72]. Internal topos mathematics allows
for a so-called truth value object with which one can, using set terminology,
freely construct power sets of sets. Such liberal set constructions are not part
of Brouwer’s intuitionism.

3 Mathematical Logic as Applied Mathematics

The original motivation for intuitionistic predicate logic appears to have been
the capture of observed regularities in intuitionistic mathematics.

Brouwer and Bishop approached constructive mathematics primarily, though
certainly not completely, without considering general rules of (constructive)
logic. Markov’s original approach was primarily through computability. All
had interest in constructive logic, but as a secondary concern. Topos theory
internal logic happens to be the intuitionistic one, but as a consequence of
category theoretic considerations.

Heyting introduced intuitionistic ‘constructive’ logic in the years 1927–
1930. He already studied axiomatic theories of intuitionistic geometry and
algebra, which use abstract general hypotheticals.

Heyting wrote on [He78, page 8] that

Logic can be considered in different ways. As a study of regularities
in language it is an experimental science which, like any such sci-
ence, needs mathematical notions; therefore it belongs to applied
mathematics.
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The realization that mathematical logic can be seen as applied mathemat-
ics dates back to the 1930s. A constructivist can consider classical mathe-
matical logic, but the linguistic structure is definitely distinct from (construc-
tive) mathematics, for classical logic includes the principle of Excluded Middle,
which constructivists deny as a general principle.

Consider the following two questions about the development of logical sys-
tems for classical mathematics. It suffices to choose A ∧ B, ¬A, and ∀xA as
the logical constants for classical predicate logic. First, did a classical math-
ematician in 1927 have with predicate logic a ‘good’ formal language in the
sense of expressive power? One may reply yes since with the right collection of
atomic formulas and choice of theory there is strong expressive power. Second,
did a classical mathematician in 1927 have a complete set of axioms and rules?
This was answered in the affirmative by Gödel’s Completeness Theorem of
1929–1930. If one wants to defend a logic as the constructive one, then at least
this logic must have substantial richness to express constructive mathematics.
Therefore we ask the same questions about intuitionistic logic as we did for
classical logic.

Already in 1923 Brouwer showed ([Br24] is a German translation of [Br23])
that ¬A is equivalent to ¬¬¬A. In 1927 the Wiskundig Genootschap, the
Dutch ‘Mathematical Society’ posted a prize question about a formalization
of Brouwer’s intuitionistic mathematics, essentially including the problem of
formalizing an intuitionistic predicate logic (the full problem statement was
more involved). To this Heyting wrote an essay for which he was awarded
the prize the following year. An expanded version of the essay appeared in
[He30a, He30b, He30c]. An earlier partial version due to A.N. Kolmogorov in
[Ko25] used a more restricted language, and for that restricted language he
didn’t include all rules implied by Heyting’s version. In the introduction to
the English translation of [Ko25], Hao Wang wrote on [Hei67, page 414] that

To a large extent, this paper anticipated not only Heyting’s formal-
ization of intuitionistic logic, but also results on the translatability
of classical mathematics into intuitionistic mathematics.

How about the two questions? Heyting chose a formal language with a
collection of logical operators equivalent to ⊤, ⊥, A ∧ B, A ∨ B, A → B,
¬A, ∀xA, and ∃xA. The axioms and rules are a proper subset of the axioms
and rules known for classical logic (we ignore some axioms about equality).
Is Heyting’s language a ‘good’ language because of its expressive power? The
material in [Bi67] and [MRR88] forms an incomplete list that can be converted
into theories and propositions over Heyting’s predicate logic. This is a positive
answer to the first question.

Second question: Did Heyting have a complete set of axioms and rules?
Heyting stated on [He71, page 106]:

It must be remembered that no formal system can be proved to
represent adequately an intuitionistic theory. There always remains
a residue of ambiguity in the interpretation of the signs, and it
can never be proved with mathematical rigour that the system of
axioms really embraces every valid method of proof.

Brouwer offered so-called weak counterexamples (Brouwerian counterexam-
ples) to show that certain logical principles, like Excluded Middle A ∨ ¬A,
are not always intuitionistically valid. Bishop on [Bi67, page 9] introduced
omniscience principles for the same purpose: If a certain logical statement A
allows one to obtain a principle of omniscience, then that is accepted evidence
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that A cannot be proven constructively. The evidence for non-provability is
obviously different in nature from provability. Although insufficient, one may
read in the existence of Kripke model counterexamples to the intuitionistic
provability of statements that such statements are plausibly not constructive.
Consider a Kripke model A with ordered collection of nodes (W,≤) and weakly
increasing function f : N → W of which we have no knowledge whether f ever
increases or in what way. Function f simulates temporal information, where
f(m) indicates what we can know at stage m about our structure of interest.
It is Aα when f(m) = α, with the understanding that our knowledge may
advance at a further stage n > m. At stage m we only can know what is
forced at node f(m). Insufficient, yes. Evidence of non-provability, also yes. If
one accepts such models plus the Kripke model completeness theorem as evi-
dence, then Heyting’s set of axioms and rules is complete. A classical applied
mathematician modeling an idealized intuitionist may certainly conclude this.

Intuitionistic predicate logic has been accepted by all major schools of con-
structivism that we listed. It is the internal logic of a topos. However, there is a
Third Question: Are the axioms and rules of Heyting’s intuitionistic predicate
logic constructive?

4 Proof Interpretations for Intuitionistic Logic

Despite the common acceptance of intuitionistic predicate logic as the con-
structive one, there is no agreement on its justification.

Troelstra on [Tr81, page 16] cited a letter of Heyting to Oscar Becker dated
23 July 1933, in which Heyting wrote (with our bibliographical citation in-
serted)

Ich habe die Axiome und Sätze der Principia mathematica [WR25]
gesichtet und aus den zulässig befundenen ein System von un-
abhängigen Axiomen gemacht. Bei den relativen Vollständigkeit
der Principia ist die Vollständigkeit meines Systems M.E. in der
best möglichen Weise gesichert3.

We follow [Tr81, page 16], where Troelstra stated that even if this seems a
simple-minded procedure, it could “. . . be done by someone who had at least
implicitly a clear grasp of the intuitionistic meaning of the logical operators.”
Let us expand the quote of Heyting at the beginning of Section 3: Heyting
wrote on [He78, page 8] that

Logic can be considered in different ways. As a study of regularities
in language it is an experimental science which, like any such sci-
ence, needs mathematical notions; therefore it belongs to applied
mathematics. If we consider logic not from the linguistic point of
view but turn our attention to the intended meaning, then logic
expresses very general mathematical theorems about sets and their
subsets.

Heyting addressed the intended meaning of the logical constants through his
proof interpretation. This may answer the Third Question at the end of Section
3, and justify the axioms and rules of intuitionistic logic. Following [Tr81, page

3“I went through the axioms and theorems of principia mathematica, and made a system
of independent axioms from the ones found acceptable. Because of the relative completeness
of the one in principia is, in my opinion, the completeness of my system assured in the best
possible way.”
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18], Heyting’s clarification of the logical constants appeared as the result of
scholarly debates which were already going on in 1928. His broadly recognized
proof interpretation of the logical constants is in [He34]. The following version
is from [TrvD88, page 9].

H1. A proof of A ∧B is given by presenting a proof of A and a proof of B.

H2. A proof of A ∨ B is given by presenting either a proof of A or a proof
of B (plus the stipulation that we want to regard the proof presented as
evidence for A ∨B).

H3. A proof of A → B is a construction which permits us to transform any
proof of A into a proof of B.

H4. Absurdity ⊥ (contradiction) has no proof; a proof of ¬A is a construction
which transforms any hypothetical proof of A into a proof of a contra-
diction.

H5. A proof of ∀xA(x) is a construction which transforms a proof of d ∈ D
(D the intended range of x) into a proof of A(d).

H6. A proof of ∃xA(x) is given by providing d ∈ D, and a proof of A(d).

This is now known as the Brouwer-Heyting-Kolmogorov BHK interpretation.
The rules of the interpretation are perceived as being used in the writings of
Brouwer, the rules are due to Heyting, and Kolmogorov’s so-called problem
interpretation of [Ko32] for the proposition logical rules is often considered as
substantially equivalent to Heyting’s, see [He58]. The proof interpretation as
stated is informal, and uses primitive terms like ‘proof’, ‘construction’, and
‘hypothetical’.

On the one hand, Heyting’s intuitionistic predicate logic has been accepted
by the major schools of constructivism we listed before. Brouwer expressed
appreciation for Heyting’s intuitionistic logic, and supported the publications
of [He30a, He30b, He30c], see [Tr81, page 17]. On the other hand, the proof
interpretation has been challenged from multiple sides, mostly to refine or
clarify Heyting’s version, but not as a challenge4 to Heyting’s intuitionistic
predicate logic.

Our original reason to deviate from the proof interpretation, and conse-
quently from intuitionistic logic, comes from the use of ‘construction’ in the
proof interpretation, both in the case H3 (and H4) for implication and in the
case H5 for universal quantification. Our concerns aren’t new. On [Tr77, page
977] we find a somewhat different proof interpretation. Its existence indicates
the difficulty of finding a satisfactory justification for Heyting’s predicate logic.
The most significant differences with the proof interpretation above are the new
required ‘insights’ in

H3’. A proof of A → B consists of a construction c which transforms any
proof of A into a proof of B (together with the insight that c has the
property: d proves A ⇒ cd proves B).

H5’. . . . we can explain a proof of ∀xAx as a construction c which on appli-
cation to any d ∈ D yields a proof c(d) of Ad, together with the insight
that c has this property. . . .

4See footnote 1 for some limited exceptions.
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The origin of these ‘insights’ can be traced back5 to Kreisel in [Kr62, Kr65],
which Troelstra on [Tr81, page 20] described as

Kreisel’s attempts at a general theory of constructions and proofs.

On [Tr77, page 977] this variation on Heyting’s proof interpretation is called
the Brouwer-Heyting-Kreisel explanation. We appear to stay closer to Kreisel’s
original variation with the version (similar to [Ru91, page 156]):

H3”. A proof p of A → B is a pair (q, r) such that q is a construction that
converts proofs of A into proofs of B, and r is a proof6 that q is such a
construction.

H5”. A proof p of ∀xAx is a pair (q, r) such that q is a construction which for
each construction c of an element d of the domain D produces a proof
q(c) of Ad, and r is a proof that q is such a construction.

The clarification of implication is a key problem for constructivists. We il-
lustrate this by examples from Markov constructivism, Bishop constructivism,
and intuitionism. There is no such problem for constructivism along the lines
of topos theory.

Kushner writes on [Ku06, page 565] about (Bishop and) Markov:

. . . [Bishop] could not avoid the key problem of any system of con-
structive mathematics, namely, the problem of clarifying implica-
tion. Markov spent the last years of his life struggling to develop
a large “stepwise” semantic system in order to achieve, above all,
a satisfactory theory of implication.

On [Bi67, page 7] Bishop wrote about the interpretation of implication (em-
phasis added):

Statements formed with this connective, for example, statements of
the type ((P implies Q) implies R), have a less immediate meaning
than the statements from which they are formed, although in actual
practice this does not seem to lead to difficulties in interpretation.

On [Bi70, page 56] Bishop wrote “The most urgent foundational problem
of constructive mathematics concerns the numerical meaning of implication.”
Bishop continued on [Bi70, page 57] with

. . . I decided to let the mathematics be the test, and found that in
actual practice there was little difficulty in giving numerical inter-
pretations to statements with implications or even nested implica-
tions. Although the numerical meaning of implication is a priori
unclear, in each particular instance the meaning is clear.

At its core the explanation of the meaning of implication is highly impred-
icative. As Michael Dummett wrote on [Du00, page 269] about the proof
interpretation:

The principal reason for suspecting these explanations of incoher-
ence is their apparently highly impredicative character; if we know

5Kreisel’s second clauses were an attempt to obtain decidability of the BHK clauses, and
includes that a constructivist should recognize a constructive proof when (s)he sees one.
The Kreisel-Goodman paradox (discovered by Kreisel and Goodman themselves by 1970)
discredited the programme. However, see the revival of interest in [DeKu15].

6Called a Nachprüfungsbeweis on [Da82, page 60].
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which constructions are proofs of the atomic statements of any
first-order theory, then the explanations of the logical constants,
taken together, determine which constructions are proofs of any of
the statements of that theory; yet the explanations require us, in
determining whether or not a construction is a proof of a condi-
tional or of a negation, to consider its effect when applied to an
arbitrary proof of the antecedent or of the negated statement, so
that we must, in some sense, be able to survey or grasp some total-
ity of constructions which will include all possible proofs of a given
statement.

For the foundations of constructive mathematics along the lines of topos the-
ory, the proof interpretation appears of marginal importance. In this approach
category theory is put forward as a foundation for mathematics. If intuition-
istic logic as a formal system shows up as the internal logic of a topos, then
that is a consequence of another foundational angle, a philosophy in which in-
tuitionistic logic (and constructive mathematics) is a consequence rather than
a source.

5 A General Theory of Constructions and Proofs

The collection of proofs has always been understood to be open-ended7. We
demonstrate that open-ended implies that Basic logic rather than intuitionistic
logic is the logic of constructive mathematics.

We introduce constructive logic anew by developing it simultaneously with
a proof interpretation. Our method is axiomatic, so avoids unnecessary onto-
logical commitments. The axioms constitute ‘obvious’ facts about construc-
tions and proofs. We neither claim nor attempt that our axiomatics form a
complete set for a full theory of constructions and proofs. We only claim that
the resulting constructive logic may be considered complete.

We imagine an idealized constructivist who never makes mistakes, and has
unlimited memory and ‘time’. We build a system of rules and axioms which
this constructivist accepts. We do not require the existence of a collection of all
proofs. Instead, the accumulation of proofs is closed under certain canonical
rules. We consider proof constructions mathematically. As Heyting wrote on
[He31, page 114]:

Ein Beweis für eine Aussage ist eine mathematische Konstruktion,
welche selbst wieder mathematisch betrachtet werden kann8.

Our theory of proofs is constructive itself, and is part of mathematics.
Kreisel in [Kr62, Kr65] developed a theory of constructions and proofs

based on objects which one may describe as pairs (π,B) with π a proof object
and B the proposition proved. Our objects consist of triples (A, π,B) where
π is a proof of B from assumption A. The word ‘assumption’ replaces the use
of ‘hypothesis’ of earlier proof interpretations so as to emphasize our distinct
axiomatic approach. A constructivist may understand π as a construction
which permits us to transform any proof of A into a proof ofB. Triples (A, ξ,B)

7See the references farther down to Heyting on [He71, page 5], to van Atten on Brouwer
on [vA18, page 3], and to Dummett on [Du00, page 274]. With some goodwill one may
read on [Ku06, page 565] a recognition by Markov that the universe of proofs is open-
ended. Goodman’s stratification of proofs in [Gd70] (intended to avoid the Kreisel-Goodman
paradox) may be another example.

8“A proof for a proposition is a mathematical construction, which itself again can be
considered mathematically.”
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with ξ a proof variable are essential to our proof interpretation of formulas like
(A → B) → C, where a proof of the principal implication needs an assumption
of this triple form for A → B to express its meaning. We now believe that
this insight isn’t new. From the notes of his lecture at Zilsel’s on [Go38,
Go95, pages 100–101] we perceive that Gödel in 1938 suggested this ternary
approach as alternative to Heyting’s proof interpretation as well as to his own
unary operator ✷B of modal logic S4. We broaden the notation by allowing
triples ( ~A, π,B) = ((A1, A2, . . . , An), π, B) with intended meaning that proof

π permits assumptions from a list ~A = (A1, A2, . . . , An). We allow n = 0. We

may write ~A,An+1 for (A1, A2, . . . , An+1) or A0, ~A for (A0, A1, . . . , An), and
so on.

We axiomatize properties of ternary relation ( ~A, π,B) with no attempt to
decide the complete meaning of the words assumption or constructive. We
defend our axioms individually as ones that should be accepted under sound
constructive interpretations of these words. Proof π itself must display its
assumptions and conclusion. Notation ( ~A, π,B) is a clarification as to what
these assumptions and conclusion are. For formal proofs we use symbols π, ρ,
σ and so on, possibly with parameters. We write ξ, η, or ζ for proof variables.
For formal statements we use A, B, C and so on, possibly with parameters. In
our axiomatization below we occasionally ignore formula parentheses when it
improves readability. We write A ⊢ ~B

C, with intended meaning C is derivable

from A, ~B, if we have a proof (A, ~B, π, C). We may write A ⊢ C when A, ~B =

A, (), or ⊢ ~B
C when ~B is the complete list. Below, each time when we introduce

a new axiom about constructing new proofs from old, we add clarifications
where necessary of the constructive meaning of ‘assumption’. Our axioms
about proofs respect constructive interpretation. We reject axioms that do
not.

We make no attempt to have the axioms independent or the axiom system
minimal. We start with a few axioms of our new proof interpretation which
precede the ones for the usual logical constants. These axioms involve the
constructive meaning of entailment ⊢. We freely reorder, or add and remove
duplicate entries, in lists ~A of formulas. If we have a proof ( ~A, π, C), then we

also have a proof ( ~A,B, σ, C). So, for example, we have rules

A ⊢~D
C

A ⊢
B,~D

C
and

⊢
B,~D

C

B ⊢~D
C

and
B ⊢~D

C

⊢
B,~D

C

If a constructivist has assumption A, then A is accepted. This is a clarifi-
cation of the intended meaning of ‘assumption’. For each list of formulas A, ~D
we have trivial proofs (A, ~D, π,A). So we have logical axiom schema9

A ⊢~D
A

Our new proof interpretation is axiomatic. Casper Storm Hansen on [Ha16,
page 385] proposes an improved explanation of what Brouwer meant with truth

9 On [vA18, page 4], in a remark referring to [Ru93], Mark van Atten claims that for
Brouwerian intuitionists “. . . there is no such thing as a mere assumption. To assume that A
is true is to assume that a construction for A has been carried out (perhaps in an idealised
sense)”. Mark van Atten points us to “Now suppose that ⊢ ¬p, that is, we have deduced
a contradiction from the supposition that p were carried out” on [He56, page 102] as his
reference (personal communication). See also [He71, page 106] or [AtSu17]. The distinction is
fictitious once the ‘idealised sense’ is understood sufficiently broadly to avoid a contradiction
with Heyting’s proof interpretation of negation. A proof of ¬A is a construction that converts
any hypothetical proof of A to a proof of ⊥. When we have consistency, a hypothetical proof
cannot become realized. As we understand it, this means that we assume A without any
commitment to its truth. Otherwise we would never prove ¬A.
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by distinguishing between what we may call proofs-in-content and proofs-as-
anticipated. Our constructivist may interpret π as a construction which con-
verts a construction for A into the same construction for A, be it an idealized
construction for A or a proof-in-content or other.

We have a composition clause for proofs. Whenever a proposition B is
proven using some assumptions, we are allowed to replace B as assumption
in another derivation by its assumptions and proof. If (A, π,B) and (B, σ,C)
are proofs, then so is (A, σ · π,C), also written as (A, σπ,C), where σπ stands
for the composition proof, and which we construct in a uniform way in terms
of π and σ. The constructive composition principle remains sound when the
proofs π and σ employ additional assumptions: If we have proofs (A, ~D, π,B)

and (B, ~D, σ,C), then also (A, ~D, σπ,C). So we have logical rule

A ⊢~D
B B ⊢~D

C

A ⊢~D
C

5.1 Propositional Logic

Before considering full predicate logic, we restrict ourselves to a new proof
interpretation for propositional logic. One advantage is that we can use sim-
pler notation. We choose the usual logical constants ∧, ∨, →, ⊤, and ⊥ of
intuitionistic propositional logic. Negation ¬A is defined by A → ⊥, and bi-
implication A ↔ B is defined by (A → B) ∧ (B → A). It may be possible to
add new ones, for example a new version of ¬A distinct from A → ⊥. In this
paper we consider no constructively distinct new proposition logical constants.

For each pair of formulas A and B we have a conjunction formula A ∧ B
with ∧ the intended meaning of ‘and’. There are trivial proofs (A ∧ B, π1, A)
and (A ∧ B, π2, B). These come with the intended meaning of an assumption
of form A ∧B. Consequently, with composition, a proof (C, σ,A ∧B) implies
that we have proofs (C, π1σ,A) and (C, π2σ,B). In the other direction, if
we have proofs (C, π,A) and (C, σ,B), then there is a proof which we name
(C, 〈π, σ〉, A∧B), and which we construct in a uniform way in terms of π and σ.
The constructive principles remain sound when the proofs employ additional
assumptions. So we have rules

C ⊢~D
A ∧B

C ⊢~D
A

and
C ⊢~D

A ∧B

C ⊢~D
B

and
C ⊢~D

A C ⊢~D
B

C ⊢~D
A ∧B

By the intended meaning of ∧, if a proof has assumptions A and B, then
there is an essentially identical proof with assumption A∧B. We have a proof
(A,B, ~D, π,C) exactly when we have a proof (A∧B, ~D, σ,C). So we have rules

A ⊢
B,~D

C

A ∧B ⊢~D
C

and
A ∧B ⊢~D

C

A ⊢
B,~D

C

We include a symbol ⊤ with intended meaning ‘true’, standing for a trivially
proved statement. For every ~D there is a trivial proof ( ~D, π,⊤), and axiom

⊢~D
⊤

For each pair of formulas A and B we have a disjunction formula A ∨ B
with ∨ the intended meaning of ‘or’. There are trivial proofs (A, σ1, A∨B) and
(B, σ2, A ∨B). Consequently, with composition, a proof (A ∨B, π,C) implies
that we have proofs (A, πσ1, C) and (B, πσ2, C). In the other direction, if
we have proofs (A, π,C) and (B, σ,C), then there is a proof which we name

11



(A∨B, [π, σ], C), and which we construct in a uniform way in terms of π and σ.
This clarifies what it means to assume a disjunction A ∨ B. The constructive
principles remain sound when the proofs employ additional assumptions. So
we have rules

A ∨B ⊢~D
C

A ⊢~D
C

and
A ∨B ⊢~D

C

B ⊢~D
C

and
A ⊢~D

C B ⊢~D
C

A ∨B ⊢~D
C

Lists ~D of additional assumptions are key in proving distributivity. Straight-
forward proofs yield B ⊢A (A ∧B) ∨ (A ∧ C) and C ⊢A (A ∧B) ∨ (A ∧ C), so
also

B ∨ C ⊢A (A ∧B) ∨ (A ∧ C)

Thus

A ∧ (B ∨ C) ⊢~D
(A ∧B) ∨ (A ∧ C)

We include a symbol ⊥ with intended meaning ‘false’. Theories need not
have an acceptable candidate for ⊥. For significant theories like arithmetic an
atom like 1 = 0 can perform this role. In such cases the word ‘false’ is only
used in an abstract sense. If we have such a candidate atom, then for every ~D
and B we have a proof (⊥, ~D, π,B), and axiom

⊥ ⊢~D
B

For each pair of formulas A and B we have an implication formula A → B
with → the intended meaning of ‘implies’. We write ¬A as abbreviation for
A → ⊥. Formula A → B has to reflect the meaning of A ⊢ B within the
bounds of what is constructively acceptable. The critical issue of what these
bounds are will be clarified below by permitted proof constructions on the one
hand, and by weak counterexamples on the other. We needn’t bother with
a more complicated notation like A →~D

B for A ⊢~D
B, since the latter is

equivalent to (A∧
∧ ~D) → B. If we have a proof (A∧B, π,C), then we have a

proof (A, πA, B → C), where πA takes proof π, replaces its assumption A ∧B
by assumption B and derives A ∧ B using the assumption A of πA. Finally
append that the result is a proof for conclusion B → C. We construct πA in
a uniform way in terms of π. The constructive principle remains sound when
the proof employs additional assumptions. So we have rule

A ∧B ⊢~D
C

A ⊢~D
B → C

Assume A → B and B → C. So we assume proofs (A, ξ,B) and (B, η, C)
without specifying ξ and η any further. As Bishop wrote on [Bi67, page 3]:

Mathematics takes another leap, from the entity which is con-
structed in fact to the entity whose construction is hypothetical. To
some extent hypothetical entities are present from the start: when-
ever we assert that every positive integer has a certain property, in
essence we are considering a positive integer whose construction is
hypothetical.

In this same sense ξ and η are hypothetical. From the assumed ξ and η we
construct composition proof (A, ηξ, C) in the hypothetical sense implied by
Bishop. The constructive principle remains sound when the proof employs
additional assumptions. So we have axiom
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(A → B) ∧ (B → C) ⊢~D
A → C

In special cases we may have proofs at hand. For example consider proof
(A ∧ B, π,B) instead of (A, ξ,B). In that case we get composition proof
(A ∧ B, ηπ,C), where proof ηπ may only become available after mathemat-
ics advances and a proof σ can be substituted for η. This special case indicates
that from A ∧B ⊢ B we can derive (B → C) ⊢ (A ∧B → C).

Assume A → B and A → C. So we assume proofs (A, ξ,B) and (A, η, C).
So we have proof (A, 〈ξ, η〉, B ∧ C). The constructive principle remains sound
when the proof employs additional assumptions, so we have axiom

(A → B) ∧ (A → C) ⊢~D
A → (B ∧ C)

Assume B → A and C → A. So we assume proofs (B, ξ,A) and (C, η,A).
So we have proof (B ∨ C, [ξ, η], A). The constructive principle remains sound
when the proof employs additional assumptions, so we have axiom

(B → A) ∧ (C → A) ⊢~D
(B ∨ C) → A

This completes our axiomatization when restricted to the language of propo-
sitional logic. Our system axiomatizes the Basic10 Propositional Logic of Al-
bert Visser in [Vi81], and is a proper subsystem of Intuitionistic Propositional
Logic.

From a historical perspective, the constructive nature of Basic Proposi-
tional Logic is not controversial, only the matter of why we stop here is. We
sketch below by means of general weak counterexamples why we stop here. To
get Intuitionistic Propositional Logic it suffices to add schema ⊤ → A ⊢ A
to Basic Propositional Logic. The schema allows one to derive modus ponens
A ∧ (A → B) ⊢ B. Before discussing the general weak counterexamples,
we show that our concerns are far from new, with a further focus on why
⊤ → A ⊢ A as a general principle should be excluded from constructive logic.

Heyting wrote on [He71, page 5] that

. . . one is never sure that the formal system represents fully any
domain of mathematical thought; at any moment the discovering
of new methods of reasoning may force us to extend the formal
system.

This agrees with Brouwer’s view. As Mark van Atten points out on [vA18,
page 3], (with his citation adapted to our list of references)

Intuitionists consider the notion of proof to be open-ended, not only
epistemically (at no moment do we know all possible proofs) but
ontologically, and hence they deny that there is such a thing as the
totality of all intuitionistic proofs ([Br07, pages 148–149]). There
is only a growing universe of mathematical objects and proofs.

Dummett wrote on [Du00, page 274]:

As mathematics advances, we become able to conceive of new oper-
ations and to recognize them and others as effectively transforming
proofs of B into proofs of C; and so the meaning of B → C would

10A slightly unfortunate name, and not unique in this. The related Basic Modal Logic
(better known as K4) in the book [Sm85] of Craig Smoryński, refers to an essentially auxiliary
modal logic for the purposes of its author. Another basic logic, of Giovanni Sambin, Giulia
Battilotti, and Claudia Faggian in [SBF00], appears to have been named with purpose. For
a unification of that one with our Basic Propositional Logic, see [ArVa12].
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change, if a grasp of it required us to circumscribe such operations
in thought. Moreover, an operation which would transform any
proof of B → C available to us now into a proof of D might not so
transform proofs of B → C which became available to us with the
advance of mathematics: and so what would now count as a valid
proof of (B → C) → D would no longer count as one.

We don’t agree with Dummett’s follow-up

These fears are groundless. In order to recognize an operation as a
proof of (B → C) → D, we must think of it as acting on anything
we may ever recognize as a proof of B → C. Of such a proof, we
know in advance only what is specified by the intuitive explanation
of →: namely, that we recognize it as an effective operation, and as
one that will transform any proof of B into a proof of C. We need
not survey or circumscribe possible such operations in advance in
any more particular way than this.

This is not an acceptable explanation. One doesn’t know what to recognize as
an effective operation as new methods of reasoning may be discovered. The
following paragraph demonstrates that a survey or circumscription of possible
future operations is unavoidable.

The principle ⊤ → A ⊢ A as a general mathematical theorem fails to
respect the observations of Heyting, van Atten, and Dummett when applied to
a general theory of constructions and proofs. For comparison consider the case
(A → B) ∧ (B → C) ⊢ (A → C), which we justify by converting assumptions
(A, ξ,B) and (B, η, C) into (A, ηξ, C). Composition ηξ exists without a need
to ‘look inside’ ξ and η, so is constructively justified. All Basic logic axioms
and rules are elementary, or are justified by building new constructions from
old ones without a need to ‘look inside’ them. By contrast, consider a proof
((⊤ → A), π, A). This is different from (A, ρ,A), where we may assume a
proof of A in an idealized sense11, we always conclude A from its assumption.
Construction π claims to turn an assumed proof (⊤, ξ, A) of A into a proof of A.
Suppose that a construction σ appears that fulfills (⊤, σ, A). A constructivist
understands σ as a construction which permits us to form a proof of A. This
may be understood before performing σ. A constructivist doesn’t recognize
a proof unseen. In the absence of other reasons why A has a proof, we must
perform σ to form a proof of A. This could be harmless were it not that the
accumulation of proofs is open-ended. After sufficient completion of σ we may
discover new methods of reasoning. Such new methods of reasoning need not
be part of performing π when transforming a different (⊤, τ, A) into a proof of
A. The existence of π is claimed prematurely. When we assume not a proof
of A but rather assume that we have a construction for a proof of A, then we
have a construction for a proof of A, which gives us ⊤ → A ⊢ ⊤ → A.

Despite the absence of full modus ponens, limited versions still hold. For
example ⊢ A → B implies A ⊢ B, see [Vi81]. So Basic Propositional Logic
satisfies the rule

C ⊢~D
A ⊢ A → B

C ⊢~D
B

As a special case, ⊢ ⊤ → A implies ⊢ A. From [ArRu98, page 323] we see that
Basic Propositional Logic satisfies ⊤ → A ⊢ A exactly when A is equivalent
to a formula of the form ((⊤ → B) → B) → (⊤ → B).

11For example by supposing that a proof of A has been carried out. See also footnote 9.
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Do we have a complete set of axioms and rules for constructive proposi-
tional logic? As in the intuitionistic case, the evidence for non-provability is
different in nature from provability. Both in [Vi81] and in [ArRu98] we find
a completeness theorem for Basic Propositional Logic with transitive Kripke
models, that is, Kripke models where the world relation is transitive but not
necessarily reflexive as in the case of Intuitionistic Propositional Logic. Using
transitive Kripke models as weak counterexamples to constructive provability
of propositional statements has similar limited value as when using reflexive
transitive Kripke models as a tool to make weak counterexamples in the intu-
itionistic case. Imagine a Kripke model A on a structure (W,❁) of nodes or
worlds W , with transitive relation ❁, and with structures Aα at nodes α ∈ W .
A weakly increasing function f : N → W simulates temporal information,
where what is forced at f(n) = α indicates what the constructivist can know
at stage n about a structure of interest. The constructivist has no knowledge
whether f ever increases or in what way. Each node α represents what a con-
structivist can know with the methods of reasoning at that node, and with the
knowledge at that node about the intended structure. At node α, nodes β ❂ α
represent possible versions of knowledge with newly conceived operations or
further understanding about the intended structure. In terms of the proof in-
terpretation, at node β constructions c at stage α for implications A → B have
been sufficiently completed to obtain proofs (A, π,B). The superstructure of
such nodes and structures above α present the limits on what a constructivist
can know at node α. Kripke models as so described may be seen as classical
‘platonistic’ (in the sense that possible future stages are all held in common
existence) models of evidence which may convince constructivists that certain
logical statements are not derivable. By definition we have α 
 A → B ex-
actly when for all β ❂ α we have β 
 A implies β 
 B. By definition we have
α 
 (A ⊢ B) exactly when for all β ⊒ α we have β 
 A implies β 
 B. Situa-
tion α 6❁ α of an irreflexive node simulates a constructivist who is in possession
of constructions, maybe idealized or in anticipation, of proofs which may lead
to newly conceived operations or to further understanding about the intended
structure. If we further have β 
 A for all β ❂ α, we simulate that at node α
the constructivist has a construction, maybe idealized or in anticipation, of a
proof of A. So α 
 ⊤ → A. Subcase α 
 A simulates that the constructivist
has a proof (construction) for A. Subcase α 1 A simulates that the construc-
tivist has a construction c for a proof (construction) of A which, when c has
been sufficiently completed, reveals a proof (construction) for A which employs
new methods of reasoning. An irreflexive node α with α 
 A → B allows us to
simulate a constructivist who can have a construction c, in anticipation or in
content or other, for a proof (A, ξ,B) such that after sufficient completion of c
a proof (A, π,B) is produced with possibly new methods of reasoning. Such π
are again constructions. Consider the special case where α 
 A → (B1 → B2).
In that case sufficient completion of c results in a proof (A, π,B1 → B2). If
α ❁ β 
 A, then β 
 B1 → B2, which simulates that at this further stage
there is a construction d for (B1, η, B2). For irreflexive β this allows for the
possibility that only after further completion of d we get a proof (B1, σ, B2)
employing still further new methods of reasoning. Are transitive Kripke mod-
els insufficient? Yes. Are they evidence of non-provability? Also yes. If one is
willing to accept the transitive Kripke models and the completeness theorem
as evidence, then Basic Propositional Logic is complete.

Over Basic Propositional Logic we have the equivalence of ¬¬A with ¬¬¬¬A,
see [AAR16, Proposition 4.1.4, page 145]. Brouwer writes in [Br24] that even
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¬A and ¬¬¬A are equivalent. The key step12 in his argument is that A im-
plies ¬¬A. We follow Heyting and equate ¬A with A → ⊥. A special case
of the key step is the claim ⊤ ⊢ (⊤ → ⊥) → ⊥ which over Basic Proposi-
tional Logic is equivalent to (⊤ → ⊥) ⊢ ⊥ since Basic Propositional Logic is
faithful, see [ArRu98, pages 321 and 329]. Using our ‘axiomatic’ notation, the
key step implies that there exists a constructive proof ((⊤ → ⊥), π,⊥) which
turns a hypothetical proof of inconsistency into an actual proof of a contra-
diction. This is too broad an acceptance of proof-in-principle for a growing
universe of mathematical objects and proofs since such a future (hypothetical)
construction may not be constructively acceptable at present.

5.2 Predicate Logic

When we broaden from propositional logic to predicate logic, we extend from
propositional letters P to predicates P (x1, x2, . . . , xm) of arities m ≥ 0. For
convenience we may write x for lists x1, x2, . . . , xm of variables of finite length
m ≥ 0. We write xy for concatenated lists x1, x2, . . . , xm, y1, y2, . . . , yn. We
write P (x) for atoms P (x1, x2, . . . , xm), and Ax for formulas A when we want
to emphasize that all free variables of A are among those in x. For constant
symbols c1, c2, . . . , ck we use similar conventions.

Constant symbols are intended to stand for descriptions. The word ‘de-
scription’ replaces the use of ‘construction’ or other terminology of earlier proof
interpretations in describing elements of the domain of discourse. On [Bi67,
pages 6–7] Bishop uses the word ‘description’ for sets defined in a possibly
incomplete way. We broaden this approach to all objects. Logic expresses very
general mathematical theorems which includes theorems about mathematics
where descriptions may be less complete. Descriptions may be idealized con-
structions, or ones in anticipation. The universe of descriptions itself may be
an open-ended accumulation like the universe of proofs, we may discover new
descriptions as mathematics advances.

Variables x are intended to range over descriptions including ones that are
not yet recognized to be of elements of the intended domain. We write Ex
or E(x) for the propositional statement that the element described by x is
sound, that is, the element described by x belongs to the intended domain.
This is in line with Dana Scott’s existence predicate of [Sc79]. We may write
Ex or E(x) for Ex1 ∧ Ex2 ∧ . . . ∧ Exn. We treat existence as a primitive
Ex, thereby preserving optimal generality when axiomatizing our very general
mathematical theorems.

We write ( ~A, πx, B) for a proof πx with assumptions ~A and conclusion B,

where list x includes all variables that occur free in ~A,B. Besides assumptions
~A and conclusion B, proof πx also holds all substitution places of variables x
in those formulas. We write A ⊢

x, ~B
C if a proof (A, ~B, πx, C) exists, with the

expected abbreviations when A is absent or ~B = () or x = (). For convenience
we ignore the order of the variables in x, or duplications among them. Proof
πx is such that no further meaning is assigned to the variables xi in x in
deriving C, beyond what follows from assuming A, ~B. This clarifies what it
means to assume formulas with free variables.

We allow the ‘empty’ description ℓ, a description of ‘nothing’, an extreme
version of an incomplete description for elements of the intended domain. So
there is at least one description. There is no element in the intended domain

12The constructive validity of this step has been challenged before, see [Go33, Go95, page
53].
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described by ℓ. One technical advantage of ℓ is that variables range over at least
one object, see the relevant substitution schema below where a free variable
y is replaced by ℓ. The atomic existence sentence E ℓ can play the role of an
abstract symbol ⊥. We have ⊥ in the language, and a trivial proof (E ℓ, π,⊥).
So also axiom

E ℓ ⊢
x, ~D

⊥

If y isn’t specified in proof πx, then we can modify the proof to π′xy by adding
such y. If, instead, variable y in proof (A, ~D, πxy, C) doesn’t occur in A, ~D,C,
then we can remove y, for example by replacing y by the empty description ℓ.
So we have rules

A ⊢
xy, ~D

C

A ⊢
x, ~D

C
y not free in A, ~D,C, and

A ⊢
x, ~D

C

A ⊢
xy, ~D

C

No further meaning is assigned to the variables xi in x in deriving C, beyond
what follows from assuming A, ~D, so we can substitute other free variables
for them. A proof (Ax, ~Dx, πx, Cx) implies a proof (Ay, ~Dy, πy, Cy), where
no variable of y is allowed to become bound after substitution. So we have
substitution rule

Ax ⊢
x, ~Dx

Cx

Ay ⊢
y, ~Dy

Cy
no variable of y becomes bound

Substitution is more general than renaming free variables since we may sub-
stitute the same variable y for different variables x and x′. Substitution by
constants is easier. So we have substitution rule

Axy ⊢
xy, ~Dxy

Cxy

Axc ⊢
x, ~Dxc

Cxc

We have the expected generalizations of the rules preceding Subsection 5.1,
essentially by adding variables x where necessary or permitted. For example,
we have rules

A ⊢
x. ~D

C

A ⊢
x,B, ~D

C
and

⊢
x,B, ~D

C

B ⊢
x, ~D

C
and

B ⊢
x, ~D

C

⊢
x,B, ~D

C

where x includes all free variables that occur. Similarly for axiom and rule

A ⊢
x, ~D

A and
A ⊢

x, ~D
B B ⊢

x, ~D
C

A ⊢
x, ~D

C

The proposition logical rules of derivations for A ∧ B, ⊤, A ∨ B, and ⊥
also remain essentially unchanged. In principle the same holds for implication
A → B. However, we replace the proposition logical rules for implication by
different ones when we combine implication with universal quantification.

Predicates P stand for statements about elements of the intended domain.
So predicates are strict, that is, we have abstract axiom schemas of form
(P (x), πx,Ex) and axioms

P (x) ⊢
xy, ~D

Ex

A proof interpretation presupposes the constructive nature of atomic state-
ments. So for the axiomatized object πx evidence must be substituted in
concrete situations.
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For each formula A we have formulas ∃xA with ∃x the intended meaning
‘there exists x’. We freely rename variables bound by ∃, with the usual restric-
tions that with substitution the new variables don’t become bound by other
quantifiers, and unchanged variables don’t become bound by the new variable
attached to this ∃. There are trivial proofs (A ∧ Ex, σxy, ∃xA). Suppose we
have a proof (∃xA, πy, B), where x doesn’t occur in y. We can trivially modify
the proof by adding a variable so that we have (∃xA, πxy, B). By composition
we have a proof (A∧Ex, (πσ)xy, B). In the other direction, suppose we have
a proof (A∧Ex, πxy, B), where x isn’t free in B. Then there is a proof which
we name (∃xA, [π]y, B), and which we construct in a uniform way in terms of

πxy. This clarifies what it means to assume ∃xA. Further assumptions ~D are
permitted when they don’t limit the meaning of x. So we have rules

A ∧ Ex ⊢
xy, ~D

B

∃xA ⊢
y, ~D

B
x not free in B, ~D and

∃xA ⊢
y, ~D

B

A ∧ Ex ⊢
xy, ~D

B

Lists ~D of additional assumptions are key in proving existential distributivity.
A straightforward proof yields B ∧ Ex ⊢xy,A ∃x(A ∧ B). So if x is not free
in A, then

∃xB ⊢y,A ∃x(A ∧B)

Thus

A ∧ ∃xB ⊢
y, ~D

∃x(A ∧B) x not free in A

We introduce implication and universal quantification using one single for-
mat. The combination formulas are essentially more elaborate than the form
∀xA. Implications A → B are definable in a uniform way as special cases.

We briefly employ proposition logical implication to clarify the reasons for
the choice of a new format. Suppose we have a proof (A∧Ex, πxy, B) with x
not free in A. So we have a proof (A, πAxy,Ex → B), where πAxy takes proof
πxy, replaces its assumptions A ∧ Ex by assumption Ex and derives A ∧ Ex
using the assumption A of πAxy. Finally append that the result is a proof of
conclusion Ex → B. Since variable x isn’t free in A, construction πAxy works
for any description c one may ever substitute for x, where E c restricts the
choice of descriptions to those of elements assumed to belong to the intended
domain. So we have a proof (A, σy, ∀x(Ex → B)) with ∀x the intended
meaning ‘for all x’. Basic logic lacks full modus ponens, so the arrow in Ex →
B is no longer always removable over domains with elements. This differs from
the case of existential quantification, where formulas ∃xA and ∃x(Ex ∧ A)
remain equivalent. Quantification is intended to only apply to descriptions
of elements of the intended domain, so formula ∀x(Ex → B) is equivalent to
∀x(⊤ → B). We employ two ways to broaden our new notation. First, by the
same argument why it is constructively acceptable to conclude A ⊢

y, ~D
∀x(⊤ →

C) from A ∧ Ex ⊢
xy, ~D

C (x not free in A, ~D), it is constructively acceptable

to conclude A ⊢
y, ~D

∀x(B → C) from A∧B∧Ex ⊢
xy, ~D

C (x not free in A, ~D).

Second, since nested quantifications like ∀x∀y(A → B) aren’t well defined, we
include multi-variable universal quantifications like ∀xy(A → B) as primitive
new notations.

Combining the motivations of the previous paragraph, we have for each
pair of formulas A and B universal implication formulas ∀x(A → B) with
the intended meaning that for all lists x assumed in the intended domain and
for which A is assumed to hold, formula B also holds. Formula ∀x(A → B)
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has to reflect the meaning of A ∧ Ex ⊢
xy, ~D

B within the bounds of what
is constructively acceptable. We freely rename variables bound by ∀, with
the restrictions that with substitution the new variables don’t become bound
by other quantifiers or by each other, and unchanged variables don’t become
bound by the new variables attached to this ∀. For convenience we ignore
the order of the variables in x, or duplications among them, in our notation.
List x is allowed to have length 0. In that case we write A → B as short for
∀(A → B).

Suppose we have a proof (A∧B∧Ex, πxy, C) with none of the variables in
list x free in A. Then we have a proof (A, πAxy, (B ∧Ex) → C), where πAxy

takes proof πxy, replaces its assumption A ∧ B ∧ Ex by assumption B ∧ Ex

and derives A∧B ∧Ex using the assumption A of πAxy. Finally append that
the result is a proof for conclusion (B ∧ Ex) → C. Since variables x aren’t
free in A, construction πAxy works for any list of descriptions c one may ever
substitute for the x, where E c restricts the choice of descriptions for B and C
to those of elements assumed to belong to the intended domain. So we have
a proof which we name (A, 〈πA〉y, ∀x(B → C)), and which we construct in a

uniform way in terms of πAxy. Further assumptions ~D are permitted when
they don’t limit the meaning of x. Thus we have rule

A ∧B ∧ Ex ⊢
xy, ~D

C

A ⊢
y, ~D

∀x(B → C)
no variable of x free in A, ~D

In particular A ⊢
y, ~D

B → C follows from A ∧B ⊢
y, ~D

C.
Universal implication broadens the rules for proposition logical implication.

We get natural replacements for its proposition logical ‘formalization’ axioms.
The earlier axioms for implication are replaced by

∀x(A → B) ∧ ∀x(B → C) ⊢
y, ~D

∀x(A → C)

∀x(A → B) ∧ ∀x(A → C) ⊢
y, ~D

∀x(A → (B ∧ C))

∀x(B → A) ∧ ∀x(C → A) ⊢
y, ~D

∀x((B ∨ C) → A)

Although their justifications are similar to the ones for implication in Sub-
section 5.1, there are complications which we could avoid in the proposition
logical case. Consider a formula ∀x(Axy → Bxy), where xy includes all vari-
ables free in A or B, and lists x and y have no variables in common. When we
assume this formula, the variables in x and y have different status. We have an
assumed proof (Axy∧Ex, (ξx)y, Bxy) with ξ a ‘hypothetical’ proof variable,
and the parentheses in notation (ξx) indicate that x lists the variables over
which ξ is assumed to universally quantify. We assume a construction γ of a
proof (construction) (ξx)y. Construction γ may be idealized or in anticipa-
tion. Its intended meaning is as follows. We describe two possible scenarios,
one focused on variables x, the other focused on variables y. Consider the
variables x. After sufficient completion of γ we may obtain a proof for ξ such
that from now on, but not before, we have that for all descriptions c of el-
ements of the domain, we can perform composition ξc and have (ξc)y. If
y = () is empty, then (ξc) is a proof of Ac() ⊢ Bc(). Now consider the
variables y instead. For all descriptions d we have a proof (ξx)d, still un-
der construction, of Axd ⊢ Bxd. Without sufficient completion of γ, proof
(ξx)d may still be ‘hypothetical’. Even if x = () is empty and descriptions
d become available after some advancement in mathematics, we may at most
have assumption A()d → B()d. Only after a sufficient completion of γ we
may obtain a proof for (ξ)d of A()d ⊢ B()d. This clarifies what it means to
assume ∀x(Axy → Bxy). This is essentially more general than a proof for
Axy ∧ Ex ⊢ Bxy, from which we obtain a proof for Axy ∧ Exy ⊢ Bxy
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where variables x and y have the same status. For the first axiom above
of ‘formalized’ composition consider assumed proofs (A ∧ Ex, (ξx)y, B) and
(B ∧ Ex, (ηx)y, C), where we may suppose that x and y are disjoint. The
composition proof equals (A ∧ Ex, ((ηξ)x)y, C) with the distinct roles of the
variables in x and y preserved. The same applies to the other two axioms.

When we broaden from propositional logic to predicate logic, further ‘for-
malization’ axioms are needed.

Assume ∀x(A → B). So we assume we have a proof (A ∧ Ex, (ξx)z, B)
with ξ as proof variable. We can substitute new variables y for the ones in x

with the usual restrictions that none of them become bound in A or B, and
that y and z are disjoint. So we have a proof (A[x/y] ∧ Ey, (ξy)z, B[x/y]).
Thus we have axiom

∀x(Ax → Bx) ⊢
z, ~D

∀y(Ay → By) no variable in y becomes
bound in A or B, and y and z are disjoint

This axiom is more general than renaming variables. For example we also have

∀xx′(Axx′ → Bxx′) ⊢ ∀y(Ayy → Byy)

subject to the usual variable substitution restrictions.
For the existential quantifier ∃ we need a further such ‘formalization’ axiom.

Assume ∀xy(A → B), with y not free in B. So we assume we have a proof
(A ∧ Exy, (ξyx)z, B) with ξ as ‘hypothetical’ proof variable. So we have a
proof (∃yA ∧ Ex, ([ξ]x)z, B). Thus we have axiom

∀xy(A → B) ⊢
z, ~D

∀x(∃yA → B) y not free in B

Assuming a universal implication ∀x(A → B) implies that we have an
assumed proof (A ∧ Exy, (ξxy)z, B), where we choose to add a variable y not
free in A or B. Absence of a free y in A or B allows this assumption of trivial
universal quantification of ξ over y. So we have axiom

∀x(A → B) ⊢
z, ~D

∀xy(A → B) y not free in any of the formulas

There are trivial proofs (∀xy(A → B), πyz, ∀x((A ∧ E y) → B)). These
come with the intended meaning of assuming a universal implication ∀xy(A →
B), in this case an assumed proof (A ∧ Exy, (ξxy)z, B). Replace (ξxy)z by
(ηx)yz by ignoring the universal quantification over y. Consequently, with
composition, a proof (C, σyz, ∀xy(A → B)) implies that we have a proof

(C, (πσ)yz, ∀x((A ∧ E y) → B))

Further assumptions ~D are permitted. So we have rule

C ⊢
yz, ~D

∀xy(A → B)

C ⊢
yz, ~D

∀x((A ∧ E y) → B)

This completes our axiomatization of Basic Predicate Logic.

The system includes the Basic Predicate Calculus BQC of [Ru98] when
we ignore function symbols and equality. Over our new system we have both
∃xA ⊢ ∃x(Ex ∧ A) and ∃x(Ex ∧ A) ⊢ ∃xA, and both ∀x(A → B) ⊢
∀x((A ∧ Ex) → B) and ∀x((A ∧ Ex) → B) ⊢ ∀x(A → B). So BQC without
existence predicate but with inhabited intended domain embeds in the new
system by relativization of quantifiers plus axiom ⊢ ∃x⊤. Additionally replace
entailments A ⊢ B of BQC by A ∧ Ex ⊢ B, where x lists the free variables of
A and B.
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Conversely, embed the new system in BQC by adding a new predicate Fx
to the language of BQC, and then relativize quantifiers to F while sending E to
F . The presence of ℓ makes that over the BQC language with extra predicate
Fx the overall domain has an element, as is required.

Do we have a complete set of axioms and rules for constructive predicate
logic? The evidence for non-provability is different in nature from provability.
In [Ru98] we find a completeness theorem for BQC with transitive Kripke mod-
els. There is no Kripke model completeness theorem for the new system. Using
transitive Kripke models as weak counterexamples to constructive provability
has limited value as do reflexive transitive Kripke models in the intuitionistic
case. Imagine a Kripke model M on (W,❁) with nodes W and transitive re-
lation ❁, and with structures Mα at nodes α ∈ W with ‘extended’ domains
Mα. The intended proper sub-domain at α is determined by those c for which
α 
 E c. All relations from the predicate logic language are essentially re-
stricted to these sub-domains. For all α ⊑ β we have morphisms ϕα

β such that

ϕα
α = id, and ϕα

γ = ϕβ
γϕ

α
β for all γ ⊒ β ⊒ α. A weakly increasing function

f : N → W simulates temporal information, where what is forced at f(n) = α
indicates what the constructivist can know at stage n. Parts of this are moti-
vated in the proposition logical case on page 15. We have α 
y (Ay ⊢y By)
exactly when for all β ⊒ α and c ∈ Mβ we have β 
 Ac implies β 
 Bc. So
we have α 
y ∀x(Axy → Bxy) exactly when for all β ⊒ α and c ∈ Mβ we
have β 
 ∀x(Axc → Bxc). We have α 
 ∀x(Axc → Bxc) exactly when
for all β ❂ α and d ∈ Mβ we have β 
 (Adc ∧ Ed ⊢ Bdc). In terms of
the proof interpretation, at node β ❂ α construction σ at stage α for universal
implication sentence ∀x(Ax → Bx) has been sufficiently completed to obtain
a proof (Ax, πx, Bx). In terms of the proof interpretation, at node β ⊒ α
with c ∈ Mβ , construction σy at stage α for universal implication formula
∀x(Axy → Bxy) implies a construction σc for universal implication sentence
∀x(Axc → Bxc). Are transitive Kripke models insufficient? Yes. Are they ev-
idence of non-provability? Also yes. If one is willing to accept transitive Kripke
models and the completeness theorem as evidence, then BQC is complete. We
give a non-trivial illustration. The following is the case:

Not a general rule:
C ⊢

yz, ~D
∀x((A ∧ E y) → B)

C ⊢
z, ~D

∀xy(A → B)
y not free in

C, ~D

An explanation of why this is not a general rule may benefit from the following
observation over Basic Propositional Logic:

Not a general rule:
A ⊢ ⊤ → B

⊤ ⊢ A → B

For consider a transitive Kripke model with nodes α ❁ β and β irreflexive. Let
all nodes δ ⊒ α be such that δ = α or δ ⊒ β. Set δ 
 A exactly when δ ⊒ β and
δ 
 B exactly when δ ❂ β. So α 
 (A ⊢ (⊤ → B)) and α 1 (⊤ ⊢ (A → B)).
A Kripke model sketches a possible constructive situation. We understand this
model as an illustration of the significance of the order by which mathematics
advances. In the given Kripke model mathematics has to advance twice. First
we may advance and get a proof of A from which a proof of ⊤ → B follows,
say construction σ. Second we advance by sufficiently completing σ and get a
proof of B. The bottom sequent of the rule doesn’t hold. In the Kripke model
it implies that if mathematics advances we would get a proof (A, π,B) besides
a proof of A, hence by composition (not modus ponens) a premature claim of
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a proof of B. So the order of advancement matters. As to the earlier rule: On
one hand the rule holds in the special case when C equals ⊤. On the other
hand we even have the special case:

Not a general rule:
C ⊢y (E y → By)

C ⊢ ∀y(⊤ → By)
y not free in C

For consider a transitive Kripke model with nodes α ❁ β ❁ γ, and β and γ
irreflexive. All other nodes δ ⊒ α satisfy δ ❂ γ. Set δ 
 C exactly when δ ⊒ β.
Let c be a new description of an element above γ satisfying γ 
 E c. Set δ 
 Bc
exactly when δ ❂ γ. There are no other domain elements d above any node for
which E d holds. Now α 
y (C ⊢y (E y → By)) and α 1 (C ⊢ ∀y(⊤ → By)).
A Kripke model sketches a possible constructive situation. In the given Kripke
model mathematics has to advance three times. First we may advance and
get a proof of C from which a proof πy of E y → By follows. In the Kripke
model, construction πy need not reveal new methods of reasoning on its own
even after completion. Construction πy only implies a further construction
of a proof (E d, ξd,Bd) after a description d is provided. Composition πd is
a construction for a proof (E d, ξd,Bd) rather than a composition of proofs,
which would have been a proof. In the model a proof (E d, ρd,Bd) can only be
obtained by sufficiently completing construction πd. Second we will advance
and get a description (in essence a construction) c and a proof of E c. This
gives us proof construction πc of E c → Bc, so also a proof of ⊤ → Bc.
Finally mathematics has to advance a third time by sufficiently completing
πc to obtain a proof of Bc. The bottom sequent doesn’t hold. It implies
that if mathematics advances we get a proof of C from which a proof σ of
∀y(⊤ → By) follows. Construction σ is independent of y, so by sufficient
completion of σ mathematics advances with a proof (E y, τy,By). With the
next advance with a description of c and proof of E c we compose constructions
and get (E c, τc, Bc), which with another proof composition allows us to claim
Bc prematurely.

6 Conclusion and Remarks

A modest grasp of what is constructive mathematics suffices to uniquely iden-
tify constructive predicate logic as BQC of [Ru98].

Although a comprehensive understanding of the meaning of ‘constructive’
may not exist, there is the expectation of computability in some strong form.
Kleene’s realizability and Martin Hyland’s effective topos are examples that
add numerical meaning to intuitionistic logic and arithmetic. Addition of com-
putable meaning is evidence for their constructive nature, but is not sufficient
to make them constructive.

Gödel argued in [Go33] that Heyting Arithmetic HA, the intuitionistic ver-
sion of Peano Arithmetic PA, includes principles that go beyond computability,
in particular in its use of negation as a special case of implication. As an alter-
native, his Dialectica interpretation of 1941–1972, named after [Go58], builds
a hierarchy of types starting from primitive recursive arithmetic PRA in an
attempt to avoid HA and give numerical meaning to a significant part of con-
structive mathematics. There are different views about the level of success of
this attempt. A generalization of Markov’s Principle holds under the Dialec-
tica interpretation. On one hand this may be understood as illustration of a
“higher degree of constructivity”, as Gödel wrote on [Go72, Go90, page 276].
On the other hand fewer objects satisfy more theorems, so this may be under-
stood as too strong a restriction on which objects are permitted when we look
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for a constructive logic which expresses very general mathematical theorems
about sets and their subsets. William Tait writes on [Ta06, page 217]:

The proper locus of constructivity is in our reasoning and, in par-
ticular, in our reasoning about numbers and functions, not in the
concepts of number and function.

We may extend the system to Martin-Löf’s intuitionistic theory of types of
[ML72, ML80], where propositions are considered as types as in the Curry-
Howard propositions-as-types interpretation of [Ho69]. The canonical proofs
are singled out as the defining notion. This improperly limits our reasoning so
much that modus ponens holds. Even in an appropriate theory of constructions
and proofs for Basic logic we can show that a proof of ⊢ A → B implies
that there is a canonical proof, which in turn implies that there is a proof
of A ⊢ B. Nevertheless we cannot in general conclude C ∧ A ⊢ B from
C ⊢ A → B. With a growing accumulation of proofs we cannot generalize
weak modus ponens to full modus ponens.
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Mathematical Logic, Birkhäuser, Boston, Basel, Berlin, 1991.

[Du00] Michael Dummett. Elements of Intuitionism, second edition,
Oxford Logic Guides 39, Clarendon Press, Oxford, 2000.

[FMS79] Michael Fourman, Chris Mulvey, Dana Scott (editors).
Applications of Sheaves, Lecture Notes in Mathematics 753,
Springer-Verlag, 1979.

[Fr72] P. Freyd. Aspects of Topoi, Bulletin of the Australian Mathematical
Society 7 (1972), pp. 1–76 and 467–480.
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Mathematical Logic, 1879–1931, Harvard University Press, 1967.
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