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Abstract

Let K be a Heyting field, i.e. a field as defined in [Hell. Let £E€K[x], £#0.
It is well-known that there is a natural construction of a quotient ring Kla] =
=k[x]/(£f) which is a ring with apartness. Then £ is prime if and only if K[a]
is an integral domain. K[a] is a field if £ is prime and has invertible leading
coefficient. If K satisfies some extra axioms, namely

vx,y(3z.xz=y v 3Iz.yz=x)

and Vx,y3n€EN (3z.x"z=y » x#*0vy=0),

then primality of f always implies K[a] is a field.

We shall also give some generalizations of these results. Furthermore, we present
some illustrations in classical mathematics by using sheaf models, e.g. the sheaf
of holomorphic functions from ¢ to ¢ which is a model of the extra axioms.

1. Basdic properties

We start with a brief introduction to intuitionistic algebra in the presence of
apartness. For a more detailed account, see [Hel] or [Ru].

We also give some shéaf models and Kripke-models of field theory. If one is only
interested in intuitionistic algebra one can skip the results about sheaf models.

For those who are not familiar with sheaf models we refer to the literature

([Fol, [Gol, [Jol, [Mal, [Ru], [sm]).

The intuitionistic structures we consider are provided with an apartness relation
#, axiomatized by
(1) Vx. o x%*x,
(2) Vx,y.x#y » y#x,
(3) Vx,y,z(x#Fy » xtFzv z#y).
The apartness is tight if we have
(4) VX, ¥ 2 xHFy > x=y.
From now on we assume that the apartness is tight, although many results remain

valid in general.

Apartness behaves as a positive version of the inequality. Equality is the nega-
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tion of a tight apartness.
For functions f we have
VR, pooasX oFireosnrX b B X =y, + 80 seune2 )= E W 0¥ )]s
1 n'f1 N b i 1 n 1 n
In the presence cof apartness we can define a "positive inequality" version of this

schema. We call f strongly extensional if it satisfies

VX, peeesX o VyreoarY (EX peee, X VFFE(Y,1e-0ry ) > W x.Fy.).
1 n'’1 n 1 n 1 n 1<i<q © 4t
With this notion there is a canonical way to axiomatize groups, rings and modules
with apartness. The definitions can be paraphrased as
(1) The structure satisfies the well-known universal axioms.
(2) The domain is provided with an apartness such that the standard total

functions on it are strongly extensional.
We restrict our attention to commutative rings.

1.1. Definition. An integral domain is a ring satisfying
(1) 15#=0.
(2) Vx,y(x#0AyF0 + xy#0) .
A field is a ring satisfying
(1) 1#%0.
(2) Vx(x#0 »> 3y.xy=1).

Examples: the Cauchy reals and the Dedekind reals are fields. A field is an inte-
gral domain and the quotient ring of an integral domain is a field. If R is an
integral domain then the polynomial ring R[X] is also an integral domain. As

apartness on R[X] we have f#g if and only if fi#gi for some i EN.

1.2 Examples of field models. For fields we have x#y ¢ 3z.z(x-y) =1. So for the

field models below we only need a description of their ring structures since the
apartness is determined by invertibility.

(1) Let K be the following Kripke-model:

Q\ /FZ
-1 )
Z , =S Z with s=2z\(2).
Then K¥E2=0v -2=0.
(2) Let K be:
K(X) K(Y) (K a field from classical mathematics)

Y0 /X»O

S_lx[x,Y]/(XY) with S the complement of (X,Y).

4
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Then K¥EXY=0 > x=0vY=0.

(3) Let X be a topological space and K a (classical) field with absolute
value ([La], p.283). This absolute value induces a topology on K. Then the sheaf
C(X,K) of parfial continuous functions with open domain and with the canonical
operations from K is a field model with apartness

[£#4ql = {a €EU|£(a) #g(a)} for £,9EC(U,K).

(4) Let R be a nilpotentfree (classical) ring. Spec(R) = {p CRIp is a prime
ideal}. On Spec(R) we take the Zariski topology, which has as a basis the collec-
tion Od= {p Espec(R) [dEp}, d €ER. Then we take on Spec(R) the sheaf with in each
p ESpec(R) as stalk the local ring R =S_1R, with S=R\p. As ring of sections
R(Od) on the basic opens Od we get R(Od) = S-1R with S the multiplicative subset,
generated by d.

Modules over a field are called vector spaces. Let M be a vector space over K,
Xyre- .,anM. We define: x

VYo

1,...,xn is free if
1,...,an€1(( w ai#o > 2 aixi#O).
JESESY 1<Sisn

In the presence of apartness the notion of freedom is more useful than the notion

of independence. As an illustration we mention the Austauschsatz.

1.3. Austauschsatz. Let M be a vector space over K and xl,...,xm,yl, ...,ynGM

such that yreenrXy is free and x reeer Xy depend on Yyreeer¥ - Then there is a

1

sequence z ,...,ZHEM, made from Yi""'yn by replacing m vectors by XyreeerXy

1
such that

(1) Zyreeanz is equivalent to Yyreeer¥ oo i.e. they depend on each other,
(2) ZyreeorZ) is free if and only if Yyreeon¥y is free,

(3) if m=n then XyreeenX is equivalent to Yyreeer¥p and Yyreeeo¥y is free.
For a proof, see [Hel] or [Ru].

n
Let VCK be a sub vector space of Kn. Let V have a degree, i.e. assume that

there is a sequence V,,...,v. of free generators of V. If k=0 then V={0}.

1 k

vl,...,v is called a basis of V. Let xGKn. Then we define

k
xFV @ YWy EV.xHFy.
Let ¢ be a formula not containing x free and let M be an mxn-matrix. Then we can

prove:

1.4. Theorem.

vk EXT (xF#V > (v Mx#E0)) > @ vV EX (x#V + Mx#£0) .

Proof: by induction on n. n=1 is trivial because then V=K or V= {0}.
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Induction step: take n>>1. Assume that we have vx EXT (x#V > (@vMx#0)). To
prove: vaxGKn(x#v + Mx#0). By 1.3 there is a basis eyrecere of K" such that
e _y+1’c-cre, is a basis of V. Then for all x=51e1 + e +gnen we have
Y e W g #O.

i<n-k

Up to isomorphism e ,...,en is the standard basis of Kn, i.e. ei= {05 500,15 0, «40)

1
with 1 on the i-th coordinate. Take el. Then we have (vael#O. If ¢ holds, then

we are done. So assume Mel#o. Then we have W a.l#o, say a“#o. (M= (otij)).

1<ia *
) S s Lo A
a

S BT 11

Let S=

0 0 (& 1
Now detS=1, thus S is invertible and

Son

< B

Lam 1

Then VxGKn(x#S-lv + (@VMS#0) holds. Let W be the image of s'lv under the mor-

phism p: (al,...,otn) e (az,...,an) c kT > Kn_l. Then we have
v €Ml #u > (@vEFEO)).

Induction hypothesis: vaVxGKn—l()ﬁ*w > Bx#d) . So we have
ovVxER" (x#57ly » Ms#0), thus
@ Vv Vx ER" (x#V > MxHO0) .

2. Algebraic extensions of f4ields

From a ring R and an ideal I we can construct a quotient ring R/I. However, in
the presence of apartness there is the extra complication of defining an apart-
ness on R/I. Therefore we have to introduce a complementary notion of ideal in

the same way as the apartness itself is a complementary notion of equality.

2.1. Definition. A coideal C of a ring R is a subobject of R satisfying
(1) -~0€c,

(2) x+tyE€Cc =+ xECcvy€EC,
(3) xy €C » xEC Ay EC.
C is non-trivial if 1 €cC.
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It is simple to show that I= («C) = {xER| 1xE€C} is a stable ideal. On the ring
object R/I we take as apartness x+I#Fy+I © x-y €C. Observe that there is some am-
biguity‘in the notation R/I since it is possible to have different coideals C,D
such that (-C) = (=D) =I. In this paper the required coideals will be clear from

the context.

2.2. pefinition. A coideal C is called prime if it satisfies
(rrec;
(2) xECAYEC + xy€EC.
A coideal is called minimal if it satisfies
1) 1€e,
(2) x€C +» JyER. axy-1E€C.

One easily verifies that for all coideals CCR we have

(C is prime) ¢ (R/I is an integral domain),

(C is minimal) ¢ (R/I is a field).
This implies that a minimal coideal is prime. The name "minimal" for a minimal
coideal C can be explained by the property that each non-trivial coideal DCC is

equal to C.

Let K[X] be a polynomial ring with f €K[X]. We can construct the quotient ring
K[a] =K[X]/(f). As mentioned above, the new aspect that we have to consider for
that construction is the apartness relation on K[a]. We have to construct a

coideal.

2.3. Definition. Let K be a field and let £E€K([X]. Then
Ce= {g€EK[X]|Vh EK[X].g#*hf}.

We want to show that C_ is a coideal such that (-1Cf) = (£f) = {gE€K[x]|3InEK[X]g=hf}.

2.4. Lemma. Let f=fo+ +fmxm€1<[x] such .that fr#O. Let M be the following

(m+n) xn-matrix:

fOO ey O

it

s “f
M= £ .0
m -

(.) fm .
[cR——

m

Then there is an s2r and an nxn-submatrix B of M of the form
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such that B”is invertible and fs#O.

Proof: by induction on (m-r). m-r =0 is trivial.

Induction step: let fr#o. Let C be the nxn-submatrix with fr on the diagonal.
f:#o, thus f:#detCV detC#0. If detC#0 then we take B =C. Assume frrx#detc.
Writing detC as the sum of n! products we get xgtft#o. Then apply induction.

2.5. Lemma. Let Pn={g€K[x]|g has degree at most n}. Let gGPn. Then we have for
all fEK([x]:

gEcf - VhEPn.g#hf.

Proof: from left to right is trivial. From rignht to left: let h€K[X]. To prove:

: & = n x n+1 m
g#hf. Split h—h<+h> where h<—h0 AP +hnx and hy = hn+lx +o.. +hmx . Then

g#h<f, thus cf#hfvhﬁ%hé. Assume hf#h<f. Then h>f#0 and hf has degree at
least n+l. Thus g#hf.

‘The following lemma gives ‘a sort of "best approximation" of g by elements of the
ideal (f).

2.6. Lemma. Let 5 be as above, f€E€K([X], £#0. Then there is a K-linear mapping
(.)’E:P + P_ such that for all g€P_ we have
n n n
(1) gGCf g g#‘:g;f,
(2) 3Ih€E€K[Xx].g=hf & g=g’§f.

Proof: (1). f#0, thus for some r we have: fr#o. Then there is an s=2r and an

(n+1) x (n+1) -matrix B as in lemma 2.4,

f  esessn
s "
B=|[. e .
RN, -
s
such that B is invertible and f #0. We identify polynomials h=x0+ +xnanPn
+
with vectors (xo,...,xn) ex” 1. Then we define:
»®
s
- +
i) wheew =0 1F 5.
£ . m
x
s+n

To keep the notation simple we shall write h* instead of h’g. Let k=h - h*f=
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=k0+k1X+k2x2+" . Then it easily follows from the definition above that
ks =ks+1 75 =ks+n'
Now consider gEPn. If gECf then we immediately can conclude that g#g*f. So as-
sume g#g*f and let hGPn. To prove: g#hf. Then we are done by 2.5. We have:
g#hfy hf# gk f. Assume hfF~g*f. Then h# g* and
BIF#~Bg* .
Let 1=X"Bh (we use the identification of B and Kn+1) . Then for some t, s<t<s+n,
we have: lt#gt while 1* =h. Thus g# 1*f =hf. This proves (1). (2) follows from
(1) by using the tightness of the apartness relation.

2.7. Theorem. Let £E€K[X], then Cf is a coideal.

Proof: we first consider the case f# 0. We check the axioms of 2.1.
wOECf is trivial: take h=0.
e 2 : € ) 5
Let glgzecf To prove gIECf Let h€K[X], then glgz#hng Thus gl#hf
Finally, let g1+92€Cf. There is an n such that gl'gZEPn' Let (.)* be a linear
mapping according to 2.6 for this Pn. Then
*
g1+g2# (g1+g2) £f.
—g* —g*
9, glf+g2 ng%‘:O.
* *
ql#glfv gz#ng.
glecfv gZECf.
This proves that Ce is a coideal if £#0.
Now consider the general situation. Again one easily verifies the axioms 2.1.(1)
wilts . €
and 2.1.(3) for Cf So let c_;1+g2 Cf
thus gl#O or 92#0. We may assume that gl#o. Take an n such that gIEPn. For all

. To prove: glecfngECf. g1+g2#0.f=0,

hGPn we have gl#hfvhf‘#o. This implies that the following formula holds:
vhepn(f#o v gl#hf) .

Let M be the following (m+n+1)x (n+2)-matrix:

(
G £5 0 -.- O
9 £ % :
gk | £
i E
m &
gn(.) ﬁm. &
0 0 ......'f
m

Let V be the subspace of Kn+2, generated by the sequence ez,...,en+2, where
e (0,..,0,1,0,..,0) with 1 on the i-th coordinate. Then the formula above
implies that we have

vxEx™H2 (x#EV + (£#0 v Mx#0)) .
Apply 1.4. That gives us
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£#0 vVx EXMH (Y > mx#0)
F#0vVhEP_.g,#nf.
If f#0 then Ce is a coideal and we have glecfvgzec
then we apply 2.5: giec

€p .q,F
£ If Vh Pn 9 hf holds
-
2.8. Corollary. Let £E€K[X]. If £=0 or f#0 then Cf is a coideal such that
(f) = (-\Cf).

Proof: the case £=0 is trivial. The case for f#0 immediately follows from 2.6

and 2.7.

Observe that by 2.7 we can always construct the quotient ring x[x]/(-,cf) . If £f#0
or if £=0 then this is the same ring as K[X]/(f). The restriction on f is essen-

tial as the following model shows.

K(T) (K a field from classical mathematics)

K[T] the localization to the prime ideal (T).

(¥
Let f=T2€K[X] and g=T. So £ and g are constants in the polynomial ring K[X].
One easily verifies that we have K[X]F -;gECf but also K[X]E g€ (£).

Let K[g] =K[X]/(£) with g=X+(f), £#0. Then K[a] is a ring with apartness. K[a]
can be seen as a vector space over K, denoted by (K[a]/K). If £ has an invertible
leading coefficient, then f has a degree, denoted by deg(f). In that case K[a] is
generated over K by the free sequence l,a,...,an_l with n=deg(f). We say that
K[a] has degree n over K.
Now let g €K[X]. If deg(f) =n exists and g has degree at most n-1 then

g#0  g(a)F0.
However, in intuitionistic algebra deg(f) need not exist. Therefore we have a

more elaborate statement.

2.9. Proposition. Let £,9€K[X], £#0 and K[a] =K[X]/(£f). Assume
VIEN (g, #0 » 33 >1.£,#0).

Then we have
g#O -« g(a)#O.

Proof: g(o)#0 immediately implies that g#0. So assume g#0. Then gi#o for some
i and gGPn for some n. We complete the proof by induction on n-i. The case for
n-i=0 is easy because then fj#O for some j >n.
Induction step: g#0. Let (.)* be a linear map of 2.6 for Pn. Then

gHFEGHE v g*EFEO.
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If g#g*f then gECf and g(a)#0. Assume g*f#-0. fj#o for some j>i thus we have
g#FFg*f v (3k >j.gk#0) . If g#*g*f we are done and if g has a k=j with gk#o we

can app]:y induction.

2.10. Remark? Let f,g€K[X], f#0 and K[a] =K[X]/(f). Let gEPn and let (.)* be a

map of 2.6 for Pn. Then we can write

 a%f = s-1 s+n+1 s+n+2
g-g¥f=(kg+...+k__ X )HZET"HX +K_ X +oasde
Let g-g*f = 1+h where l=k0 * s +ks_1x . If h#0 then there is an s'>s such

that fs,#o, because g and g* have degree at most n. If 1#0 then even 1(a)#*0 as
follows from 2.9.

Remark 2.10 plays a role in some induction proofs.

3. Relative primality

We first consider relatively prime pairs of polynomials before we consider prime
polynomials. This looks somewhat unnatural, but there are reasons of economy for
it. In particular we can avoid repetition of similar proofs.

There are several ways to define relative primality. We shall consider three of

them.

3.1. Let £,g€K[X]. Let @ be a formula in which h,k and 1 do not occur free. We
shall consider the following notions of relative primality modulo .
(1) (g#0 AVh,kEK[X](hEC_ > hf+kg#0 vQ)) w»
v (%0 AVh,k EK[X] (k €c, > hf+kg##0 vY)) ,
(2) (£%40 vg#0) AVh,kGK[X](hGCg vkECf -+ hf+kg#0 v),
(3) vh,k,1EK[X](h¥h(0) > hk#Ff v hlFgvo).

We shall prove that 3.1.(1),(2) and (3) are equivalent. Our main interest concerns
the case when @ is false. Then we can delete (. However, the more general notions

of 3.1 are needed for the proof of 3.6.

3.2. Lemma. Let f,g,h,k €K[X] be such that £#0, g#0 and h# h(0). Then we have:
(1) f#nkvkEcg,
(2) kGCf > £ £(0),
(3) kE€c, » kGCgvf#g.

Proof: (1). From £#0 it follows that f#hk vhk#0. Assume hk#0. Then k#0. If
ki#o for some i then hk has degree at least i+l. Thus f#hk v3j >i.fj#0. Since
k has degree at most n for some n we find

£k vVi EN (k70 ~ 3j >i.fj#0).
k#0 thus by 2.9 we yield ﬁf#hkvkecf.

Concerning (2): £#£(0) v £(0)#0. Therefore we may assume f(0)#0. From kECf now
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follows k#Kk£(0) " f. Thus £#££(0).
(3). Assume kECf. Let f,g have degree at most p. By induction on m= (2p-m1—m2) we
shall prove: f_ #0 and 9 #0 then kECgvf#g_. The case for m=0 is contained in
the induction sil:ep. Induct)z.on step: there is an n such that kEPn. Let (.)’E and
(.); be maps’for P according to 2.6. Then k#k%f. Thus k#k;gvk;g#kgf, hence
kECgvg#ka(";#kE. We may assume k:';#:kg. Then we easily find that

gFFf v 3In, >ml.fn1#0 vian, >m2.gn2#0.

Applying induction we get kECgv f#4g.
3.3. Lemma. The statements 3.1.(1) and (2) are equivalent.

Proof: one easily proves that (2) implies (1). ¢
Assume (1). Let g#0 and Vh,kEK[x](hGCg + hf+kg# 0 vy) . Let h,k EK[X] be so
that kecf. It is sufficient to show hf+kg# 0 v for these assumptions. hGPn for
some n. Let (.); be a map for Pn according to 2.6. Then hf+kg= ((h);g+d) f+kg =
= ((h);f+k)g+df with d=h-(h);g. Since g#0 and kECf we have that ((h);f+k)g#0.
Thus hf+kg# 0 v df#0. Assume df#0. Then &*0 and hECg. Apply the assumption:
hf+kg#0 v ©.

3.4. Lemma. 3.1.(2) implies 3.1.(3).

Proof: assume that 3.1.(2) holds. Let k,1 €EK[X] and let h€K[X] such that h#h(0) .

We have f#0vg#0 so by 3.2 we get f#hkvkecfvgﬁ*hlvlecg. Assumption 3.1.(2)

implies f#hk v g#hlv 1f-kg# 0 v@. Assume 1f#kg. Then 1f#1lhk v lhk#¥kg. Thus
f#hk v g% hl.

3.5. Lemma. Let f,g,q,r €K[X] such that f=qgg+r. Then we have
(1) If £,g satisfies 3.1.(1) (or 3.1.(2)) then the same holds for g,r.
(2) If f,g satisfies 3.1.(3) then the same holds for g,r.

Proof: (2) is easy.

(1): let £,g,q,r be as above and let f,g satisfy condition 3.1.(1). From

f#0vg#0 it immediately follows that we have g#0 v r#0. First consider the

case g#0. Let K[R] =K[X]/(g). Since f,g satisfies 3.1.(1) and since £(B) =xr(B)

we have: Vh(B) EX[B](h(R)#*0 + h(B)r(R)¥0v ) . Thus g,r satisfies 3.1.(1). This

solves the case when g#0.

Now assume r#0. Let h,k€K[X] such that kGCr. By 3.2 this implies kGCfvf#r. -
If £#r then g#0 and we are done by the proof above. If k €C_ then hf+kg#0v Q.

Thus hr+kg# 0 v @v hqg# 0, where hqg#0 again implies g#O0.

£

3.6. Theorem. 3.1.(1), (2) and (3) are equivalent.
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Proof: by 3.3 and 3.4 we only have to prove that 3.1.(3) implies 3.1.(1). By in-
duction on m1=n1+n2 we shall show: for all f,g,p if f,g satisfies 3.1.(3) modulo

@ and if f has degree at most n, and g has degree at most n_ then f,g satisfies

1
3.1.(1) modulo . The case for m

k=1=0 in 3.1.(3)).

2
=1 is trivial since f# 0 vg# 0 v holds (take

1
Induction step: let f,g be given, satisfying the conditions for the induction
step. f#0vg#O0Ov @ holds, thus we may assume: g#0. Let h,k€K[X] such that

hECg. To prove: hf+kg# 0v@. By 3.2 we have that g#g(0). Then the assumption

2
that £ #0 and gs #0. We complete the proof of the induction step by induction

3.1.(3) implies fGCng. We may assume that £E€C_ holds. There are Syrs such

1
on m2=n1+n2—51_52' The case for m, = 0 is contained in the induction step for m

Induction step for m

T
s s

ot let £=£ 4+ St E X 1 and g=gg*.--+g X 2. We may as-
sume that sy >52 without loss of generali}:y. There are q,rEK[X]Zsuch that

f=qgg+r and r has degree at most s, -1. One easily verifies that for all _}1,_}5_,£E

€K[X] such that h#h(0) we have _}é#rvﬁ#iv f#Efvg#Fgv Q. Let | be the formu-

la f#fv g#gv@. Then r,g satisfies 3.1.(3) modulo y. By the induction hypothe-

sis onm,, r,g satisfies 3.1.(1) modulo y. By 3.5 f,g satisfies 3.1.(1) modulo Y.

Thus since hECg implies hECS_v g#g we get h£+k9j$0>v£#fvg#qvw, and thus
hf+kg# 0 v Qv £ £ v g#g.

And if f#fv g#g holds we apply the induction hypothesis on m,.

3.7. pDefinition. Let f,g€K[X]. £ and g are relatively prime if they satisfy one

of the statements in 3.1 with ¢ is false.

3.8. Definition. Let R be a ring, bER. b is zero divisor free if
Vx ER(x#0 » xb#0).

The following proposition relates relative primality with zero divisor free

elements.

3.9. Proposition. Let £,g€K[X], £f#0 and K[a] =K[X]/(£). Then the following are
equivalent:
(1) £ and g are relatively prime,

(2) g(a) is zero divisor free.
Proof: immediate from the definitions and 3.6.
Now it is easy to show:

3.10. Proposition. Let f,gl,gzex[x] such that the pairs f,g, and f,q2 are both

relatively prime. Then f and 9,9, are relatively prime.
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Proof: we have f#0v (gl#o Agz#o) . If f#0 then we consider K[a] =K[X]/(f).
Then gl(a) and gz(o.) are zero divisor free if and only if gl(u)gz(a) is zero divi-

sor free. So by 3.9 we have that f and 9,9, are relatively prime.

2
Assume gl#O and 92#0' Thus gl#gi(O) vgz#gz(o) v (91(0)#0 Agz(O)#O) o
gl#gl(O) or gz#gz(O) then f#0 and we are done. Thus assume that 91(0)#0 and

gz(O)#O. Let h,k EK[X] such that hECg s To prove: hf+kg1g2#0. Since
172
hec92(°)91 if and only if hEcgl we have hECglvgz#gz(O) (use 3.2.(3)). If

92#92(0) then f#%0 and we are done. Assume hECg . Then hf+kg192#0.
1

4. Primality and minimality

Let fE€K[X], £f#0. Let K[a] =K[X]/(f). We shall give conditions for f such that
K[a] is an integral domain. In contrast to the classical case this does not yet
imply that K[a] is a field. In section 5 we shall consider a special class of

fields for which we have that K[a] is a field if and only if K[a] is an integral

domain.

4.1. Definition. Let £ €K[X]. Then f is prime if £#£(0) and for all g,h€K[X]
with g#g(0) and h#h(0) we have f#gh.

4.2. Lemma. Let fEK[X], £f#0. Then the following are equivalent:
(1) £ is prime,

(2) f#£(0) and for all gECf f and g are relatively prime.

Proof: assume (1). Let gECf and h,k,1E€K[X] such that h#h(0). To prove:
hk# f v hl#g. Since f#0 we have f#hk v hk#¥0. So we may assume: hk#0. Then
K#Kk (0) v k(0)#£0. If k#Kk(0) then £#hk because £ is prime. Assume k(0)#0. Let
K[a] =K[X]/(f) . gE€C, implies g(a)#*0. Thus g(a)¥*h(a)1(a) vh(a) l(a)#*0. If
g(a)#*h(a)1l(a) then g#hl. Assume h(a)l(a)#0. Then h(a)#0, thus h(a)k(0)F*0.
Then we have h(a)k(a)#0 v h(a) (k(a)-k(0))#0. If h(a)k(a)#*0 then hk¥f. Assume
h(a) (k(a) -k (0))#0. Then k#%k(0) in K[X] thus hk#f because f is prime. This
proves (2).

Assume (2). Let g,h€K[X] such that g#g(0) and h#h(0). By 3.2 this implies
f#ghv gECf
Thus f#gh and f is prime.

. Assume gE€C_. Then f and g are relatively prime, thus f#gh v g#g-1.

As in classical mathematics we can prove([Hel]):

4.3. Theorem. Let f €K[x], £#0, K[a]=K[X]/(£f). Then the following are equiva-
lent: (1) f is prime,

(2) K[a] is an integral domain.
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Proof: assume (1). Then 1#0 in K[o] because f#£(0) in K[X]. Let 9, (a),gz(a)e
€K[a] such that 9, (@) 0 and gz(a)#o. By 4.2 the pair f,g, is relatively prime.
Thus gl(a) is zero divisor free and 9, (OL)g2 (@)#*0. Thus K[a] is an integral do-
main. Assume (2). 1#0 in K[o] thus £ £(0) in K[X] by 3.2. Let gECf. Then
g(a)#0. Since K[a] is an integral domain g(a) is zero divisor free. Thus f and g

are relatively prime. Now use 4.2.

In classical mathematics we have that if £ is prime then K[a] is a field. But in
intuitionistic mathematics this matter is more complicated. A special case can be

derived from the theorem below.

4.4. Theorem. Let f,g€EK[X] be relatively prime and let deg(f) exist, deg(f) =n.
Then there are unique h,k€K[X] such that k has degree at most n-1 and such that
hf+kg=1.

Proof: the case for £=£(0) is trivial. Assume that deg(f) >0. Let x=x0+
=l
+xn_1x with xo,...,xn_1

have the following division algorithm. Since f has invertible leading coefficient

variables over K. As in classical mathematics we

there are unique q,rEK(xo,...,xn_l)[x] such that xg =qf+r and such that r has
degree at most n-1. The division algorithm gives that the coefficients ro,.. ,r:n_1
of r are linear in the xj, say:

< X Tron o TAL

i SO i+1,n%n-1"
Let K[a] =K[X]/(f). g(a) is zero divisor free. If we substitute elements EO,...

...,gn_lex for x and such that Ei#O for some i, then x(a)#0 by 2.9.

ore Xy
Thus x(a)g(a)#0 and r(o)#0. This implies that the matrix (cxi j) is invertible.
0 5 as +kn-1xn-1 such that after substitution x
get kg = -hf+l. Since f#0, h is unique too.

Thus we find a unique k=k - ki we

1

As a corollary we get ([Hell):

4.5. Theorem. Let f €K[Xx], £#0, K[a] =k[X]/(f). Let £ be prime such that deg(f) =

=n exists. Then K[a] is a field such that the vector space (K[a]/K) has degree n.

The existence of the degree of f in theorem 4.5 is not always necessary to show
that K[a] is a field, see section 5. On the other hand K[a] need not be a field if

f has no degree, see the example below.

4.6. Example. Let K be the following field model.

Q(x,y)

K is: T

s7lalx,y] with s = (x,y)S°"P1"
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The elements x and y are transcendental over . Let f=xx2+x+1 and let g=yX+1 be
polynomials over K. One easily verifies that f£ is prime and that f and g are rela-
tively prime in the model. Thus K[a] =K[X]/(f) is an integral domain with g(a)# 0.
But K[a] is not a field because we do not have an inverse element for g(a) =yu+l.
For, if g(a) is invertible in K[a] we may assume that g(on)--1 is of the form
am(aa+b) with a,b€K, cf. 4.10. Over Q(x,y) in the top node of the Kripke-model we
find for all n unique an,bHEQ(x,y) such that ocn(anct+bn) (yau+1) = 1. an and bn

satisfy the equation

2
a 0o —x|" (=xy)/ (x+y"-y)
2
bn 1 -1 (x=y)/(x+y"-y)| .
5 a, a
Since x+y -y essentially occurs in the denominator of det b b and since
0 -x 170
det T oapl T it follows that x+y2-y essentially occurs in the denominator of an or

bn for all n. Thus also in the denominator of a or b. But x+y2—y is not invertible

in the bottom node of K. Contradiction. g(a) is not invertible.

The traditional method of [Ar] fails in the intuitionistic case if f has no inver-
tible leading coefficient. But by refining the traditional proof we can derive the

following invertibility theorem for prime polynomials in general.

4.7. Theorem. Let f= fo +... +annEK[X] be prime, fm#O, g€K[X] such that
= ==
g(a)#0 in K[a] =X[X]/(f). Then we can split £=£f +f where £ = f0+ +fsxs,
) Ead
s>m, fs#o such that g(B) is invertible in K[B] =k[X]/(f ). Moreover, we can

find an inverse b(B) such that b has degree at most s-1.

Proof: we prove the statement above by induction on (n-m). The case for n-m=0
immediately follows from 4.5.

= #=
Induction step: start with f# = f0+ +fmxm. f =f-f . Let EO""’gm-l be

- ==
K-variables and x=§_+ ... + Em-lxm 1. Then gx =gqf +r by the division algorithm.

0
S . +rm-lxm_1 with the £, linear in the Ej.- r; = ai+l,1£o ® g +ai+1,m€m-1’
Altogether we have gECf, f prime, fm#O, g(a) zero divisor free in K[a] and
gx = qf+r-qgf . Thus VEgreendb (W F,i#o -+ r-qf #0).
oSi<m-1 _
vgo,...,am_l( w gi#o + r#0vgf #0).
oSSi<m-1

Using lemma 1.4 with V= {0} we get det(ocij)#o vaf #0. Assume qf #0. Then £ #0,
thus fm,#o for some m' >m. Apply induction. Assume det(cxij)#o. Then there are

B

07" "Bm-l €K such that

1

W

0

(Otij)

=)

Tt
o

m-1
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- =
Let b=80+... +8 _1Xm 1. Then gb=gf +1 (with Bi for the Ei). g(B) is invertible

in K[B] =K[ x]/('f#n).

Let KCL be fields, o €EL. Let K(a) be the smallest field containing K and a. a is
algebraic over K if there is an £E€K[X] such that £f#0 and £(a) =0. The following

theorem gives some conditions under which f is prime and deg(f) exists.

4.8. Theorem. Let KCL be fields, a €L, £€K[X], £#0. Then are equivalent:
(1) £ has degree at most n, f(a) =0 and (K(a)/K) has degree at least n,
(2) f is prime and deg(f) =n exists, K[X]/(f) =K[a] =K(a) with the canonical
morphism and (K[a]/K) has degree n.

Proof: from (2) to (1) is trivial.
Assume (1). There are Pyre-erP eQyrees ,anK[x] such that pl(a)qz1 (6] e e
=1 : : S | 3
---rp (@)q (@) is free in (K(@)/K). Let g=q,-...-q and take r, =p.q, dq, 1SS<a.
Then x, (), ...,rn(a) €k[a]. A simple calculation shows that r, {(c ) A ,rn(a) is
free in(K[a]/K).There is a k€N such that r, (a),...,rn(a) depend on l,a,...,o.k.
Let £ =c0 < P +-cn)(n and cj#o. Now we can prove by induction on (n-j) that cn#O.
(n-j) =0 is trivial.
Induction step: (n-j) >0, thus j <n. Take the sequence S consisting of
2 -1
l,0,07,...,0 '
j+1 j+2 k+n-j
cj+1 TG

N . j+1
+
? : j+2:~--yc.

342%° 442 j+2

Cj+1d

R R

a '
k+n-j
o} a J,

c o, c a2, ..., eI,

n n n 1

Then, by induction on 1 we can prove that a~ (O <1 <k) depends on S, because if
1>j then o P T o e ol ... 4 d®™™ Y,
% j 0 1 j=-1 j+1 n
1,,...,0 depends on S, thus also rl(a),...,rn(on) depends on S. rl(a),...

...,rn(a) is free, thus csat#o for some s>j and t>j. Thus cs#o for some s >j.

Replace cj by c - Using induction on (n-j) we can conclude: cn#o. Thus deg(f) =n

exists.
From this follows immediately: 1,a,...,ak is equivalent to 1,a,...,an_1 and
r, (@), ...,r (a) depends on l,a,...,un-l. Thus I,a,...,an—1 is free(1.3). Take the

canonical morphism @ : K[X] + K[a] sending X to a. Let g €K[X]. f has invertible
leading coefficient, thus g=qf+r by the division algorithm. So @(g) =r(a). Now it
is simple to see that C_= {g EK[X]|Lp(g)#O} and that @ is surjective. That means
@* : K[X]/(£) »~ K[a] is an isomorphism. K[a] is an integral domain, thus Ce is
prime. Thus f is prime and deg(f) =n exists. Thus K[a] is a field. Thus kla] =x(a)
and (K[a]/K) has degree n.



428 W. RUITENBURG

We may not assume that a prime polynomial f has an invertible leading coefficient.
On the other hand we may assume that the bottom coefficient is invertible, see

4.10.
4.9. Lemma. ‘Let f be prime and a,b€XK such that a#*b. Then £(a)#0 or £(b)#0.

Proof: we may assume a=1 and b=0. £#£(0) thus lecf. That implies l-xecfv

v XE Ce- If I—XGCf we substitute Y =1-X, thus reducing case 1—x€Cf to case
XECf. Therefore we may assume that xecf. To prove: f£(0)#0.

E=aj+... +anxn#f(0) thus ai#O for some i=1. We have two cases to consider.
Case 1. al#o for some i=>2. Then f =pX+f(0) with p#p(0). f is prime, thus
£(0)#0.

Case 2. al#O. Then alecf and alx—fecf. Thus £(0)#0 or ai#o for some i=>2.

4.10. Remarks. Let £=f, +... +fnx" be prime, K[a] =k[x]/(f). Take a=1 and b=0
in lemma 4.9. Then £(1)#0v £(0)#0. If £(1)¥%0 then we substitute (1-X) for X.

This gives an isomorphism K[X] =K[X]. So up to isomorphism we may assume fo#o or

even fo =1. Then o is invertible and 01-1 =-f:1 el an_l.
n-1

m m—
Let g(a)—go+...+gma , then g(o.)—ot(q1+...+gmot —gofl-...-gofnot ).
Iterating this procedure we find x.,... ,xn_ €K such that

n-1 :

g(a) =am(x0+... tx 0 )

and such that for all i '
xi#o + 35 >i.fj#0.
By 2.9 this implies:
3i.xi#0 “ g(a)#0.

4.11. Some useful properties. Let K[a] =K[X]/(f) with £=f

0 P fnx" prime,
fm#o. If m<n then K[a] need not be a field. But it is very much like a field. As
illustration of that statement we shall list some properties of K[a] below.
Instead of integral domains K[a] as above we consider rings K[a] with some g(a)
which is zero divisor free. This adds some generality to the results and it does
not increase the length of the proofs. Let f,g€K[X] be relatively prime. Then

fEvagECX holds. We may assume fecx. Then £(0)#*0. Let f=a_+... +anxn,

0

am#o. We may assume that a_=1. Let K[a] =K[X]/(f). Then g(a) is zero divisor

free, i.e. we have ’
(1) vh(a).(h(a)#0 -+ g(a)h(a)#0), (cf. 3.9).

There are h,k €K[X] such that hf+kg=1 if and only if g(a) is invertible (with

inverse k(a)). Thus if we want to find h,k such that hf+kg=1 as in classical

algebra, then it is enough to find an inverse element for g(a). So we come to the

invertibility problem for g(a). g(a) need not be invertible as follows from 4.6,

but we have some approximate results. We can show: there is an s 2m such that

P
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Ea =
as#o and for £ =ao+... +as)(s there are h,q€K[X] such that gh=qgf +1. Proof:

e
analogous to 4.7. Write gh=qf+l-r with r=q(f-f ). This gives:
(2) There are h,r €X[X] such that we have r#0 -+ 3m' >m.am,#0 and

gla)h()=1-r(a).

As in 4.10 we can write g(a) =apk(a) for some pEN and some k=k_+... +k Xn_1

n-1
E€K[X] satisfying k #0 + 3j>i.a #0. Then for K@), k@), o0 ™ k(@) there

are polynomials k(l},...,k(n)EK[x] each of degree at most n-1 such that q_l+1k(a)

-x® (q). Let a be the matrix a= (x‘!),...,k'™) using the coefficients of the
polynomials as column vectors, detA=¢. Then by Cramer's rule there exists a vec-

tor vEK" such that Av= (£,0,...,0). Let c=v_ +...+v__ X" ', Then clk@a =

n-1
Tl e have g(@)l(a) =§. Assume

=£. Thus for some 1EK[X] with l(a) =c(a)a
an#O. Since k(g) is zero divisor free we find VwEK" (w#0 - Aw#0). Thus A is
invertible and £#0. Conclusion:

(3) There is an 1€K[X] and a £ €K such that we have an#o + E#0 and

gla)l(a) =§.
Assume that there is an m' €N such that £lr(a)™ . Then m' <2" for some n'>0 and
ot
Et(a) =r(c.)2 for some t €EK[X]. Then we have 0y s
glah(@) = g@h@) (1+r@) (Mrr@ 2 enen-er@? ) =1-r@?

and g(a) (h(a)+l(a)t(a)) =1. Thus g(a) is invertible.

'
(4) If E!r(u)m for some m' then g(a) is invertible.

4.12. Example. Let £,g be as in example 4.6, K[a] =K[X]/(f). When we apply 4.11 to

g(a) =ya+l we find that

1 . Xy 2

1_y(YOl+1) = 1—1—.y0.
and

2
(=xya+x-y) (yo+l) = x+y -y.
Xy 2 2 4 :

Thus r(a) =ij§(! and £ =x+y -y. Observe that in the bottom node of the Kripke-

L
model K we do not have .‘,’lr(oz)m for any m'.
5. CLD-ﬁid,dA

In this section we consider fields satisfying the extra axiom
D: Vx,y.x|y vy|x.
Using D we can find the greatest common divisor (gcd) of finite sequences Kyreo-

...,xn of elements of K. Another consequence of D is:
S.1. Proposition. If a field K satisfies D then it also satisfies xy=0 +x=0vVvy=0.

With help of D we can diagonalize matrices in the following sense. We call a
matrix B= (Bij) a half matrix if Bij =0 for all pairs i>j or if Bij=o for all

pairs i <j. B is a diagonal matrix if Bij =0 for all pairs i#j.
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5.2. Proposition. Let K satisfy D and let A be an mxn-matrix over K. Then there is

an mxn-half matrix B1 and an nxn-matrix 52 with detBZ=1 such that A=BIBZ'

Proof: use that each row (xi

17 ’ain contains a gcd.
.

5.3. Proposition. Let K satisfy D and let A be an mxn-matrix over K. Then there is
an mxn-diagonal matrix B, an mxm-matrix B1 and an nxn-matrix 32 with detB1 =det132=

=1 such that A=BIBB2.

Proof: as for 5.2.

With axiom D and some extra axioms we shall show that for all £,gE€K[X] we have £
and g relatively prime if and only if there are h,k €X[X] such that hf+kg=1. This
implies that for prime f€K[X] K[a]=k[X]/(f) is a field. The main lemma for this
result is:
5.4. Lemma. Let K satisfy D, let £,gE€K[X] be relatively prime with f=aj+...
+anxn, am#o and K[a]l =k[X]/(f). Then there are £,nE€K such that

(F#0vE= (?) - _(35>m.as#0 va = 0) and

ViEN (Eln* -~ "g(a) is invertible").

Proof: from 4.11 we get: there are h,r,l1E€K[X] and £ €K such that-g(a)h(a) =1-r(a)

and g(a)l(a) =§ and'if r#0 then as#o for some s>m and if £=0 then an=0.

Moreover, if Elr(a)l for some i then g(a) is invertible. Let N be the gcd of the

coefficients of r €K[X]. Then r=nr with r#0. If n#0 then r#0 thus we have
(0 v E =.O) + (3s >m.§s#0 va = 0).

Let i€EN. If £ln" then £lr(a)” and g(a) is invertible by 4.11.(4). Thus we have

proved: Vi €N (£|ni -+ "g(a) is invertible").

5.5. Consider the following principles.
C,: Vy,xIn€EN (x"ly > x#0vy=0),
B VyIn ENVx (x"ly ~ x#0vy=0).

We call fields that satisfy Ci and D ciD-fields.

One easily verifies that C, implies C

2 1°
5.6. Theorem. Let K be a ClD-field. Let £,9 €K[X] be relatively prime. Then there
are h,k €K[X] such that hf+kg=1.

Proof: we have fECngECX. By symmetry we may assume fECx. Then £(0)#0 and

thus we may assume £(0) =1. Write £ as f=a_+... +anxn and let k[a]=xk[x]/(f). BY

0
induction on (n-m) we show: if am#O then g(a) is invertible in K[a]. The case for

n-m=0 follows from theorem 4.4.
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Induction step: let a #O By lemma 5.4 there are £,n€K such that n#0v E=0
implies 3s>m.a #Ova =0 and if Eln for some i then g(a) is invertible. By
axiom C1 there is a number p such that np|E implies n#0v £ =0. By axiom D we have
nPle v elnP. 1f £In® then g(a) is invertible. If n°lE then n#0vE =0 holds. Then

we have 3Js >r’n.as#0van=0 and we apply induction: g(a) is invertible.

5.7. Corollary. Let K be a C,D-field, f€K[X], £#0, K[a] =k[X]/(f). Then we have:

1
f is prime < K[o] is a field.

Proof: from right to left is trivial. So assume that f is prime and let g€K[x].

By 3.9 we have g(a)#0 if and only if f and g are relatively prime. Now apply 5.6.

One thing that is missing in 5.6 compared to 4.4 is that we do not have a bound on
the degrees of h and k, see example 5.11.(1). Another difference between 5.6 and
4.4 is that we do not have a uniqueness condition on h and k. But we have a weak

uniqueness in the following sense.

5.8. Proposition. Let K be an arbitrary field. Let £,3 €EK[X] be relatively prime,

f=a_ +...+a X', £(0)#0. Let mEN . Then there is at most one pair h,k EK[x]

4 (1)

such that k= K c15 herei i satisfies Vi EN (ki‘“#o > 33 >i.aj#0) and such

that hf+kg=1.

Proof: we only have to show the existence of at most one k. Let K[a] =K[x]/(f).
tet k=x%‘1? and 1=x™) be so that g(@a®™ !’ (@) =gt@a™ ! (@) = 1. Then

“)(a) -1(1) (a) and k(l) v € (f). Assume k(l)#l(l). Then k(l)#l(l) for some i
and thus k(”#o 1“)#0 holds. Thus a #0 for some j >i. ThJ.s J.mpl:.es that we

i
have view (k1= lh))i#o + 33>1.a,40). So by 2.9 k1= 1M ec,.
(1 _,m ) :

Contra-

diction. k

Observe that from 5.6 and 4.10 it follows that if K is a CID-field then for some
m EN there is a solution h,k where k =xmk(“ is as described in 5.8.
If for some m we have a k=xmk(1) as in 5.8 such that g(a)amk(“ () =1, then there

2 €K[X] such that k% (@) =a % (@) ana 12 Sitisfies the condi-

is a k
tions of 5.8. Iterating this procedure we find that if we have a special solution

ka(i) for some m then we have a special solution for all m' >m.

We have some constructions of new fields from old ones. We shall show that they

preserve combinations of the axioms D, C1 and Cz.

5.9. Theorem. Let K be a field and K(X) the field of rational functions over K. If
K satisfies one of the axioms D, D /\C1 or D/\C2 then K(X) does so too.

Proof: for D, use the fact that the numerator f of an element f£/g €K(X) can be
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written as £=nh with n€K and h# 0. The rest is trivial.

5.10. Theorem. Let K be a CiD-field, fEK[X], £ prime and K[a] =X[X]/(£f). Then
K[a] is also a ciD-field.

Proof: from 5.7 it follows that K[a] is a field. Now we shall prove the following
claim:

each g(a) €EX[a] can be written as Zr(a) with £ €K and r(a)#0.
The remaining details concerning D/\Ci then follow easily from the property D/\Ci
for K.
Proof of the claim: let f=ao+ e +anxn. We may assume that £(0) =1. By induction
on (n-m) we shall prove: if am#o then the claim holds. The case for n-m=0 is
easy. We continue with the induction step. Let am#o and g(a) €x[al. n is the gcd
of am+1,...,an. By induction on p we show

(g(@) =pz(a) with z(@)#0, u€K) v (g(a) =nfu(a) for some u(a)).
The case for p=0 is trivial. Induction step: we may assume that g(a) =npu(a)

P

'
holds, otherwise there is nothing to prove. We can write g(a) =n o™ x(a) for some

n-1
' = + * = * . i
m' and x x0+.. xn-—lx - Lot (L) (.)f .Pn > Pn be a map according to 2.6 and
with corresponding invertible submatrix B with as = fs#o on the diagonal such that
s 2m. Then we can write x = (x)*f+y with y =y_+y_ according to 2.10. Let Y be the gcd
of the coefficients of y. Then y =Yz with z#0. Y=Yz and ;"= Y;- From z#0 we
derive E#OVE#O. Assume z#0. Then z(0)#0 v z#0. If z(a)#0 then x(a) =y(a) =
. L —

=Yz(a) and g(a) =nPYG.m z(a) with o z(a)#0. So assume z#0. The coefficients of
y are divisible by n thus we get nly. Conclusion: x(a) =nv(a) for some vEK[X]. So

p+l m'
g(a) =n® "o
By 4.11.(3) there is an 1€K([X] and a §EK such that £ =0 implies an=0 and

v(a). This completes the induction on p.

g(a)l(a) =&. By axiom C, there is a PEN such that nPlf implies n#0vE=0. Now

Pu(a) for some u€K[X]. Thus npu(a)l(o.) =§. There is a

we may assume that g(a) =n
q €K[X] such that npul+qf=€. Let € be the gcd of the coefficients of q: g=€q
with g#*0. From the fact that gf#q(0)£(0) it follows that n®le. Thus also nflg

and 0 v §=0. Then we have 3s >m.as#0 van=0 and we can apply induction on n-m.

5.11. Examples.
(1) Let K be the following field model.

]FZ [¢]

AN

Zig)

2
Then one easily verifies that K satisfies the axioms D and C2. Let f=2X"+X+1.

Then f is prime and K[a]=K[X]/(f) is a field. For instance we have 60+170 and

the localization to the prime ideal (2).

—0L4(60L+1) =1. In fact there is no sz(z) [x] with degree at most 3 such that

?
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f(a) (60+1) =1.

(2) Let R be a unique factorization domain from classical algebra. Let R have
infinitely many prime numbers. Then we construct the following sheaf model. As
topological space we have X = {(p) CR'p is prime} with the cofinite sets as open
sets. For open UCX, U=X\{(p1),..., (pn)}, we take as ring of sections above U:
R(U) =S-1R with S the multiplicative set generated by PyteeecPp . Call this sheaf
model R. Then R is a local ring model satisfying D since as stalk structures in

the points a = (p) we have the local rings R . Each yER(U) with y#0 cannbe

(p) n

written as y =d/e where d,e€R and d has a prime number decomposition d=p1 <ePp -
Let n=max(n1,...,nm). Then one easily verifies that for all x&€R(V), VvCu, we
5 Finally, let a= (p) €[ ~y#o0l
for y=d/e€R(U), a€U. Thus pld. Then [ ~y#0] is an inhabited open set, thus

have ﬂxn+1|y + x#0vy=0] DV. Thus R satisfies C

cofinite in X. So there are infinitely many prime ideals (p) such that p|d. Thus
d=0 and y=0. This implies a €[y =0]. Conclusion: R is a field model satisfying
D and C2. Observe that this .model satisfies more extra properties. Since each open
subset UCX of the infinite set X is cofinite or empty we find that for each for-
mula @ R satisfies wpV -+, e.g. in R Vx(x=0v 2x=0) holds.

(3) Let C=C(E,f) be the sheaf of holomorphic functions. Then C is a field
model. Since sections a,b in a neighbourhood of some [ can be written as power
series a(£) =am(g-c)m+am+l(£—c)m“+... and b (&) =bn(£-(,)n+bn+1(E—E)n+1+... we see
that C satisfies DAC,.
By interpreting intuitionistic theorems in their sheaf models we have an alter-
native method for deriving results concerning classical structures. As an illus-
tration of such a procedure we shall use theorem 5.6 to derive a property of

rings, using the sheaf construction of 5.11.(2). This property is chosen for its

illustrative nature.

5.12. Example. Let R be a unique factorization domain from classical algebra.

Assume that R has infinitely many primes. Let f,gE€R[X] such that for each maximal

ideal MCR we have gcd(f,g) =1 in (R/M)[X]. Then there are h,k €R[X] such that
hf+kg =1.

Proof: let R be the sheaf model of 5.11.(2). From the conditions on f and g it
follows that R_F=(f and g are relatively prime). Thus we have

RFE3h,k EK[X].hf+kg = 1.
From the interpretation of the existential quantifier 3 it follows that we get the
h and k only as a collection of local sections. The problem to find global h,k
(and thus h,k €ER[X]) essentially makes the proof more complicated.
There are open U,VCX such that UUv=X and [£(0)#0] =0 and [g(0)#0] =Vv. Here
X\U={(p) CR|p is prime and pl£(0)} and x\V={(p) CR|p is prime and plg(0)}. Then
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by 5.8 we have a cover {U ;mel\l} of U such that we find unique h,k with k=ka(1)
above Um' where ka(“ is as described in 5.8. By the compactness of U we can

find a fixed m such that we can choose U_=U. By the sheaf property we can glue

(1)

the local - ynique - h,k with k=X"k to hU,kUGR(U)[X]. So th+kUg=1 where we

allow divisors of f(0) in the denominators ot the coefficients of hU and kU. So
there is an aUGR and an n€N such that aUhUGR[X], aukUER[X] and
a h f+aUkUg= f(O)n. In the same way we get an equation avhvf+avkvg= g(O)m. From

Uuu

the conditions on £ and g it follows that the ideal (£(0),g(0)) CR is not contain- ¥

ed in any maximal ideal MCR. Thus (£(0),g(0)) =R and so (£(0)",g(0)™) =R. There
c n m_ A = o = + 5
are s,t&R such that sf(0) +tg(0) 1. Now take h saUhU+tavhv and k saUkU tavkV

Then h,k €ER[X] and A
hf+kg=1.
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