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Abstract

We present an axiomatization for Basic Propositional Calculus BPC, and
give a completeness theorem for the class of transitive Kripke structures. We
present several refinements, including a completeness theorem for irreflexive
trees. The class of intermediate logics includes two maximal nodes, one being
Classical Propositional Calculus CPC, the other being E1, a theory axioma-
tized by ⊤ → ⊥. The intersection CPC∩E1 is axiomatizable by the Principle
of the Excluded Middle A∨¬A. If B is a formula such that (⊤ → B) → B is
not derivable, then the lattice of formulas built from one propositional vari-
able p using only the binary connectives, is isomorphically preserved if B is
substituted for p. A formula (⊤ → B) → B is derivable, exactly when B is
provably equivalent to a formula of the form ((⊤ → A) → A) → (⊤ → A).

Mathematics Subject Classification: Primary 03B20; secondary 03B55, 03C90.
Keywords: Constructive propositional logic, Kripke models.

1 Introduction

There exist two principal sources of justification for Basic Logic; constructivism and
constructivity. The one through constructivism is somewhat more philosophical,
and expounded in [7]. In that paper we observe that the first-order logic of the well-
known constructivisms is Intuitionistic Predicate Calculus IQC. Most explanations
of the logical constants are variations upon the Brouwer-Heyting-Kolmogorov proof
interpretation. Our modification of this interpretation yields the first-order logic
Basic Predicate Calculus BQC, a proper subsystem of IQC.

The approach through constructivity precedes the one through constructivism,
but was originally restricted to Basic Propositional Calculus BPC, see [10]. The
traditional world of constructivity consisted of two related, but quite distinct, parts.
Constructivity considers the tools and machinery that are associated with or moti-
vated by constructivism or by computability. So one part includes the forms of con-
structive mathematics alluded to above; the other involves general recursive function
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2This research is partially supported by the Netherlands Organization for Scientific Research
(NWO).
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theory. In recursive ‘constructive’ mathematics one often considers situations where
all proofs, in most cases codes for programs that correspond with proofs, are essen-
tially known. Not all such situations, like in the case of the encodings used in the
well-known proof of Gödel’s incompleteness theorem, are traditionally recognized
as a form of constructivity. If we accept the more inclusive notion as constructivity,
then this proof of Gödel’s incompleteness theorem provides us with another con-
structive logic, the modal logic for provability PrL (identical to the system G of
[3]), which satisfies Löb’s rule. The syntax of Intuitionistic Propositional Calculus
IPC differs in an essential way from that of PrL with its ✷, but IPC corresponds
in a natural way to the modal logic S4. Albert Visser found a propositional logic,
FPC, with a syntax identical to the one for IPC, to complete the informal equation

IPC

S4
=

FPC

PrL
.

This enabled him to interpret implication as formal provability [10]. In [9] Craig
Smoryński uses Basic Modal Logic BML, better known as K4, as the natural gen-
eralization of both S4 and PrL. Similarly, Visser went beyond the equation above
by introducing the system BPC satisfying the informal equations

BPC

K4
=

IPC

S4
=

FPC

PrL
.

In this paper we present the first part of an overview of BPC and its model
theory. Many results for Basic Predicate Calculus BQC and its model theory are
natural generalizations of results known for Intuitionistic Propositional Calculus
IPC. Therefore this study of BPC precedes the model theory of BQC and further
extensions. We discuss the fundamental algebraic aspects of BPC; Kripke model
theory for BPC, which appears to offer the easiest methods to derive additional
results on intermediate logics.

2 BPC Axioms and Rules

The language for Basic Propositional Calculus BPC is the same as the one for
Intuitionistic Propositional Calculus IPC. So it has a set of propositional variables,
the usual logical constants ⊤ and ⊥, and the logical connectives ∧, ∨, and →. The
theory of BPC is a proper subsystem of IPC, but with restriction to ⊤, ⊥, ∧, and
∨ it still is the usual one that, as for IPC, corresponds to a distributive lattice with
top and bottom. The fraction that involves → is substantially weaker. It is no
longer true that, for all A, the map Y 7→ A → Y functions as right adjoint to the
map X 7→ X ∧A. In particular, modus ponens doesn’t hold in BPC.

There exist several ways to axiomatize BPC. In [10] we encounter a version that
uses natural deduction. In [1] further axiomatizations are considered, including cut
free versions. In [6] and [7], and here, we use a version with sequents. The BPC
axiomatization below is given in the form of a collection of sequent axioms and
axiom rules. We use notational conventions as illustrated below. For the rules a
single horizontal line means that if the sequents above the line hold, then so do the
ones below the line. A double line means the same, but in both directions. The
BPC axioms that don’t involve → are essentially those for a distributive lattice with
top and bottom. So BPC satisfies all substitution instances of:

A ⇒ A

A ⇒ B B ⇒ C
A ⇒ C

2



A ⇒ ⊤ ⊥ ⇒ A

A ⇒ B A ⇒ C
A ⇒ B ∧ C

B ⇒ A C ⇒ A
B ∨ C ⇒ A

A ∧ (B ∨ C) ⇒ (A ∧B) ∨ (A ∧ C)

The implication-free fragment is identical to the proposition logical fragment of ge-
ometric logic. The system BPC diverges from Intuitionistic Propositional Calculus
IPC in its rules and axioms for implication. BPC satisfies all substitution instances
of

A ∧B ⇒ C
A ⇒ B → C

Notice the single horizontal line as opposed to the double line in case of IPC. We
also add the ‘formalized’ versions of some of the rules of ⇒ to make → reflect its
properties, see Proposition 2.3:

(A → B) ∧ (B → C) ⇒ A → C

(A → B) ∧ (A → C) ⇒ A → (B ∧ C)

(B → A) ∧ (C → A) ⇒ (B ∨ C) → A

This completes the axiomatization of BPC.
The expressions ¬A and A ↔ B are the usual abbreviations for A → ⊥ and

(A → B) ∧ (B → A), respectively. We write A ⇔ B as short for A ⇒ B plus
B ⇒ A, and often ⇒ A, or even A, for ⊤ ⇒ A. Given a set Γ of sequents and
rules, let Cl(Γ) be the set of all sequents that can be obtained, after finitely many
applications of the BPC rules and the rules of Γ, from the BPC sequent axioms plus
the axiom sequents of Γ. We say Γ satisfies, or proves, A ⇒ B, written Γ ⊢ A ⇒ B,
when A ⇒ B ∈ Cl(Γ). Similarly, Γ satisfies, or proves, the rule

γ = A1 ⇒ B1 . . . An ⇒ Bn
A ⇒ B

,

written Γ ⊢ γ, when Γ ∪ {A1 ⇒ B1, . . . , An ⇒ Bn} ⊢ (A ⇒ B). We usually
write Γ ⊢ A as short for Γ ⊢⇒ A. The set Γ is consistent when Γ 6⊢ ⊥. A theory
Γ over BPC is a set of sequents and rules closed under derivability. A theory is
axiomatizable by a set Γ if it equals the closure of Γ under derivability. A theory
Γ is a sequent theory if it is axiomatizable by a set of sequents. In that case Γ is
uniquely determined by Cl(Γ). For that reason we identify sequent theories with
sets Cl(Γ) of sequents closed under derivability.

The standard examples of theories are IPC, FPC, and CPC: Intuitionistic Propo-
sitional Calculus IPC is the extension of BPC by all substitution instances of the
Rule of Modus Ponens

A ⇒ B → C
A ∧B ⇒ C

.

Formal Propositional Calculus FPC is the extension of BPC by all substitution
instances of Löb’s Rule

A ∧ (⊤ → B) ⇒ B
A ⇒ B

.

Classical Propositional Calculus CPC is the extension of IPC by all substitution
instances of Excluded Middle

⇒ A ∨ ¬A.

Our first task is showing that IPC and FPC, and thus CPC, are sequent theories.
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Proposition 2.1 IPC is axiomatizable by the schema

⊤ → A ⇒ A.

FPC is axiomatizable by the schema (Löb’s Axiom)

(⊤ → A) → A ⇒ ⊤ → A.

Proof. Obviously, the axiom schema ⊤ → A ⇒ A is derivable from IPC. Con-
versely, we easily see that BPC satisfies the following weakening of Modus Ponens:

A ⇒ B → C
A ∧B ⇒ ⊤ → C

.

This, combined with ⊤ → C ⇒ C, gives the Rule of Modus Ponens. Apply Löb’s
Rule to ((⊤ → A) → A) ∧ (⊤ → (⊤ → A)) ⇒ ⊤ → A to derive Löb’s Axiom.
Conversely, suppose A ∧ (⊤ → B) ⇒ B. Then A ⇒ (⊤ → B) → B hence, by Löb’s
Axiom, A ⇒ ⊤ → B. So A ⇒ A ∧ (⊤ → B), and thus A ⇒ B. ⊣

Note that FPC ∪ IPC is inconsistent.

Proposition 2.2 (Functional Completeness) Let Γ be a sequent theory. Then

Γ ∪ {A} ⊢ B ⇒ C

if and only if
Γ ⊢ A ∧B ⇒ C.

Proof. By induction on the complexity of proofs. If Γ ⊢ B ⇒ C then, obviously,
Γ ⊢ A ∧ B ⇒ C. The case where B equals ⊤ and C equals A is trivial. Suppose
that B ⇒ C follows from B ⇒ D and D ⇒ C. By induction, Γ ⊢ (A ∧ B ⇒ D)
and Γ ⊢ (A ∧ D ⇒ C). Then Γ ⊢ (A ∧ B ⇒ A ∧ D), and thus, by transitivity,
Γ ⊢ (A ∧ B ⇒ C). Suppose B is of the form D ∨ E, and D ∨ E ⇒ C follows from
D ⇒ C and E ⇒ C. By induction, A ∧D ⇒ C and A ∧ E ⇒ C follow from Γ, so
(A∧D)∨ (A∧E) ⇒ C does too. Apply distributivity. The other cases are similar.
The reverse trivially holds. ⊣

The axiomatization of BPC includes ‘formalized’ versions of some rules of the
axiomatization: In the formalization one has, among other things, → in places where
in the corresponding positions in the original rule one sees ⇒. This formalization
extends to all rules as follows:

Proposition 2.3 (Formalization) Let Γ be a sequent theory. Then

Γ ∪ {A1 ⇒ B1, . . . , An ⇒ Bn} ⊢ (A ⇒ B)

implies
Γ ⊢ (A1 → B1) ∧ . . . ∧ (An → Bn) ⇒ A → B.

Proof. By induction on the complexity of proofs. The rule of Implication In-
troduction immediately implies that if Γ ⊢ A ⇒ B, then Γ ⊢ X ⇒ A → B, where
X is the required conjunction of implications above. If A ⇒ B equals Ai ⇒ Bi

for some i, then we even have ⊢ X ⇒ A → B. As to the rules, suppose that
A ⇒ B follows, by the Transitivity Rule, from A ⇒ C and C ⇒ B. By induction,
Γ ⊢ X ⇒ A → C and Γ ⊢ X ⇒ C → B, so Γ ⊢ X ⇒ (A → C) ∧ (C → B).
Application of the ‘formalized’ Transitivity Axiom, plus the Transitivity Rule, then
yields Γ ⊢ X ⇒ A → B. Suppose that A ⇒ B → C follows, by Implication
Introduction, from A ∧ B ⇒ C. By induction, Γ ⊢ X ⇒ A ∧ B → C. Now
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A ⇒ B → A∧B holds, so by the axiom sequent of ‘formalized’ transitivity we have
A ∧ (A ∧ B → C) ⇒ B → C. So A ∧ B → C ⇒ A → (B → C) by Implication
Introduction, and thus Γ ⊢ X ⇒ A → (B → C). The remaining cases are just as
simple. ⊣

This Proposition shows that implication → dutifully reflects the properties of
the sequent arrow ⇒. Implication → reflects ⇒ properly if the converse also holds:
A set of sequents Γ is called faithful if

Γ ⊢ (A1 → B1) ∧ . . . ∧ (An → Bn) ⇒ A → B

implies
Γ ∪ {A1 ⇒ B1, . . . , An ⇒ Bn} ⊢ (A ⇒ B).

All extensions of IPC are faithful since, in that case, C ⇒ D is equivalent to
C → D. In particular CPC is faithful. Let E1 be the theory axiomatized by
⊤ → ⊥. Then E1 ⊢ A → B, for all A and B, so it essentially says that we can
replace all implications in the axioms and rules of BPC by ⊤. So we end up with
geometric propositional logic, which is consistent. If E1 were faithful, then E1 ⊢ ⊥,
so E1 were inconsistent; contradiction. So E1 is not faithful. We will show below
that BPC and FPC are faithful.

Contexts are defined as follows: Add a new propositional variable, say P , to the
language. Let D be a formula over the extended language, and let A be a formula
over the old language. Then D[A] is constructed by replacing each occurrence of P
by A. Similarly, multiple, say double, substitution is performed by adding two new
atoms P and Q to the language; D is a formula over the extended language; and A

and B are formulas over the old language. Then D[A,B] is formed by replacing all
occurrences of P by A, and all occurrences of Q by B.

Proposition 2.4 (Substitution) BPC satisfies the Substitution Rule

A ∧B ⇒ C A ∧ C ⇒ B
A ∧D[B] ⇒ D[C]

and the Substitution Axiom

A ∧B ↔ A ∧ C ⇒ A ∧D[B] ↔ A ∧D[C].

Proof. By Proposition 2.3 the Substitution Rule for BPC immediately implies
the Substitution Axiom, so it suffices to prove the Rule. Let Γ be the theory
axiomatized by A ∧ B ⇒ C and A ∧ C ⇒ B. We complete the proof by induction
on the complexity of D. The cases for D a propositional variable or a constant
are trivial. If D[p] equals a disjunction E[p] ∨ F [p], then, by induction, we have
Γ ⊢ A∧E[B] ⇒ E[C]∨F [C] and Γ ⊢ A∧F [B] ⇒ E[C]∨F [C]. By the Disjunction
Rule and Distributivity, Γ ⊢ A ∧ (E[B] ∨ F [B]) ⇒ E[C] ∨ F [C]. If D[p] equals a
conjunction E[p]∧F [p], then, by induction, we have Γ ⊢ (A∧F [B])∧E[B] ⇒ E[C]
and Γ ⊢ (A ∧ E[B]) ∧ F [B] ⇒ F [C]. So Γ ⊢ A ∧ (E[B] ∧ F [B]) ⇒ E[C] ∧ F [C].
Finally, suppose D[p] equals an implication E[p] → F [p]. By induction we have
Γ ⊢ A ∧ E[C] ⇒ E[B] and Γ ⊢ A ∧ F [B] ⇒ F [C], so Γ ⊢ A ⇒ (E[C] → E[B]) ∧
(F [B] → F [C]). Thus Γ ⊢ A ∧ (E[B] → F [B]) ⇒ E[C] → F [C]. This completes
the proof by induction. ⊣

A propositional variable P occurs formally in a formula A[P ] if P only occurs
inside implication subformulas; P is strictly informal in A[P ] if P does not occur
inside implication subformulas.

5



Proposition 2.5 (Formal Substitution) Let P be formal in A[P ]. Then BPC
satisfies

(B ↔ C) ∧A[B] ⇒ A[C].

Proof. The result follows immediately from Substitution when A[P ] is of the
form D[P ] → E[P ]. The general case then follows by induction on the complexity
of A[P ], identical to the proof of Substitution above. ⊣

Let Q be a propositional variable. Then the sets P andN are inductively defined
by

{Q,A ∧ P, P ∧A,A ∨ P, P ∨A,A → P,N → A} ⊆ P and
{A ∧N,N ∧A,A ∨N,N ∨A,A → N,P → A} ⊆ N ,

for all A in which Q does not occur, P ∈ P, and N ∈ N .
Clearly, the collection of formulas in which Q occurs exactly once is the disjoint

union of the collections P and N of positive contexts and negative contexts of Q.
Each context A[P ] is essentially a repeated substitution of P in places marked by
uniquely occurring propositional variables Q1, . . . , Qn in some formula B. A propo-
sitional variable P is positive (negative) in a formula A[P ] if each such substitution
takes place in a variable Qi for which B is a positive (negative) context. Note that
if P is strictly informal in A[P ], then it is also positive in A[P ].

Proposition 2.6 (Monotonicity) Let P be positive in A[P ]. Then BPC satisfies

B ∧ C ⇒ D
B ∧A[C] ⇒ A[D]

.

Let P be negative in A[P ], then BPC satisfies

B ∧ C ⇒ D
B ∧A[D] ⇒ A[C]

.

Proof. We may assume that P occurs exactly once in A[P ]. We complete the
proof of both statements simultaneously by induction on the complexity of A[P ].
The cases where A[P ] is a propositional variable or constant are trivial. Suppose
P is positive in A[P ], which equals E[P ] → F [P ]. By induction, we derive from
B ∧ C ⇒ D both B ∧ F [C] ⇒ F [D] and B ∧ E[D] ⇒ E[C]. So we also get
A ∧ (E[C] → F [C]) ⇒ E[D] → F [D]. All other cases are just as easy. ⊣

In the same way that Proposition 2.5 is the ‘formalized’ companion of Substi-
tution, the following is the ‘formalized’ companion of Monotonicity: If P is formal
and positive in A[P ], then BPC satisfies

(C → D) ∧A[C] ⇒ A[D].

If P is formal and negative in A[P ], then BPC satisfies

(C → D) ∧A[D] ⇒ A[C].

Lemma 2.7 BPC satisfies A[A[⊤]] ∧ (⊤ → A[⊤]) ⇔ A[⊤].

Proof. The direction ⇐ easily follows with Substitution. For the converse: We
can write A[P ] as B[P, P ], where Q occurs formally and R occurs strictly informally
in B[Q,R]. Then BPC satisfies B[A[⊤], A[⊤]] ⇒ B[A[⊤],⊤] by Monotonicity, and
B[A[⊤],⊤] ∧ (⊤ → A[⊤]) ⇒ B[⊤,⊤] by Formal Substitution. So BPC satisfies
A[A[⊤]] ∧ (⊤ → A[⊤]) ⇒ A[⊤]. ⊣

IPC has the distinctive property that all its extensions are faithful. The dis-
tinctive property of FPC is Visser’s Fixed Point Theorem [10]. A formula F is an
Explicit Fixed Point of A[P ] over a theory Γ if A[F ] ⇔ F is derivable from Γ.
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Theorem 2.8 (Explicit Fixed Point Theorem) FPC satisfies A[A[⊤]] ⇔ A[⊤].

Proof. Apply Löb’s Rule to the lemma above. ⊣

The converse of the Explicit Fixed Point Theorem holds too: The existence of
explicit fixed points implies FPC: It even suffices that just formulas of the form
A[P ] = P → B have explicit fixed points. For let C be an explicit fixed point of
A[P ] = P → B. Then ⊤ → B ⇒ C → B ⇒ C and, by Substitution, C ⇒ ⊤ → B.
Thus ⊤ → B is also an explicit fixed point of A[P ]. So Löb’s Axiom holds. Explicit
fixed points need not be unique (take, for example, A[P ] equal to P ), but sometimes
they are [10]:

Proposition 2.9 Let P be formal in A[P ], and let B be an explicit fixed point of
A[P ] over FPC. Then FPC satisfies B ⇔ A[⊤].

Proof. By Substitution we have B ⇒ A[⊤]. Conversely, by Formal Substitution,
we have A[⊤] ∧ (⊤ → B) ⇒ A[B], so A[⊤] ∧ (⊤ → B) ⇒ B. So, by Löb’s Rule,
A[⊤] ⇒ B. ⊣

The existence of single parameter explicit fixed points immediately implies the
existence of multiple parameter explicit fixed points. Example: Suppose we are
given formulas A[p, q] and B[p, q], construct formulas F and G such that FPC
satisfies F ⇔ A[F,G] and G ⇔ B[F,G]. First set E[q] equal to A[⊤, q]. So FPC
satisfies A[E[q], q] ⇔ E[q]. If we can find G for the second equation, then F can
be chosen as E[G]. But the second equation now looks like B[E[G], G] ⇔ G, so
we can set G equal to B[E[⊤],⊤] = B[A[⊤,⊤],⊤], and thus choose F equal to
E[G] = A[⊤, B[A[⊤,⊤],⊤]].

The schema ⊤ → A ⇒ A of IPC is a proper extension of BPC. Nonetheless
there exist nontrivial formulas for which this schema holds over BPC. We even have
a characterization.

Lemma 2.10 BPC is closed under the rule

((⊤ → A) → A) → (⊤ → A)
(⊤ → A) → A ⇒ (⊤ → A)

.

Proof. By the Substitution Proposition 2.4 we have ((⊤ → A) → A) ∧ (((⊤ →
A) → A) → (⊤ → A)) ⇒ ⊤ → (⊤ → A), and by Transitivity (⊤ → (⊤ →
A)) ∧ ((⊤ → A) → A) ⇒ ⊤ → A. ⊣

To simplify notations we define ⊤nA recursively by ⊤0A = A and ⊤i+1A =
⊤ → ⊤iA.

Given a formula A, set C = ⊤A → A and D = ⊤A. Then, by Lemma 2.10,
BPC satisfies C ∧ (C → D) ⇒ D.

Proposition 2.11 Let ΞA = (⊤A → A) → ⊤A. Then BPC satisfies ⊤ → ΞA ⇒
ΞA. Conversely, BPC is closed under the rule

⊤ → A ⇒ A
A ⇔ (⊤A → A) → ⊤A

.

Proof. The first statement immediately follows from Lemma 2.10 and Formal-
ization. As to the rule, BPC obviously satisfies A ⇒ (⊤A → A) → ⊤A. Con-
versely, suppose ⊤A ⇒ A and (⊤A → A) → ⊤A. Then, by Substitution, we have
(A → A) → A, so ⊤A, and thus A. ⊣
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Application: Let S be a set of formulas, and let ΓS be axiomatized by all sequents
(⊤A → A) → ⊤A with A ∈ S. Then, by Lemma 2.10 and the faithfulness of BPC,
ΓS is faithful. Note that FPC equals ΓL, where L is the collection of all formulas.

Not all formulas of the form ΞA of Proposition 2.11 are derivable over BPC, but
the slightly weaker nontrivial schema ((⊤A → A) → A) → ⊤A is, or equivalently:

Proposition 2.12 BPC is closed under the rule

A ∧ (⊤B → B) ⇒ B
A ⇒ B

Proof. By Monotonicity A∧⊤B ⇒ A∧(⊤B → B). So if we assume A∧(⊤B →
B) ⇒ B then, with Transitivity, A ∧ ⊤B ⇒ B. And thus A ⇒ A ∧ (⊤B → B).
Apply Transitivity. ⊣

3 Kripke Models

There are several classes of models for BPC. We give preferential attention to Kripke
models, since they are easy vehicles for deriving several simple but important prop-
erties about BPC and some of its extensions. The Kripke model completeness
theorem for BPC is due to Albert Visser [10]. The proof freely uses classical math-
ematics. We re-formulate his result and proof, since we use a sequent calculus
axiomatization rather than natural deduction as in [10]. Our (essentially Kripke’s,
see [4]) class of Kripke models is, of course, significantly larger than the better
known class of Kripke models for IPC.

A Kripke model is a tuple K = 〈WK, IK〉, where the frame WK = W = (W,≺)
consists of a nonempty set W of nodes, or worlds, with a transitive binary relation
≺. The function IK = I assigns to each atom p of the language of BPC a subset
I(p) ⊆ W that is forward closed, that is, if β ≻ α ∈ I(p), then β ∈ I(p).

We also write α ‖− p for α ∈ I(p). The relation ‖− is uniquely extended to all
formulas of the language by the inductive definition:

α ‖− ⊤,

α ‖− A ∧B if and only if α ‖− A and α ‖− B,

α ‖− A ∨B if and only if α ‖− A or α ‖− B,

α ‖− A → B if and only if for all β ≻ α, β ‖− A implies β ‖− B.

Let � be the reflexive closure of the transitive relation ≺. We extend the relation
‖− to all sequents by

α ‖− A ⇒ B if and only if for all β � α, β ‖− A implies β ‖− B.

A trivial induction on the complexity of formulas yields that β � α ‖− A implies
β ‖− A. So α ‖− A if and only if α ‖− (⇒ A). A model K satisfies A ⇒ B, written
K |= (A ⇒ B), if and only if α ‖− (A ⇒ B) for all nodes α ∈ W . We often write
K |= A as short for K |= (⇒ A). For sets of sequents Γ we write K |= Γ if and only
if K |= γ, for all γ ∈ Γ. We write Γ |= γ when for all models K, if K |= Γ, then
K |= γ.

Proposition 3.1 (Soundness) Let Γ ∪ {γ} be a set of sequents. Then Γ ⊢ γ

implies Γ |= γ.
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Proof. It suffices to show that ‖− satisfies the axioms of BPC, and is closed
under its rules. For example, suppose α ‖− (A∧B ⇒ C), and let β � α be such that
β ‖− A. Then γ ‖− B implies γ ‖− C, for all γ � β. So certainly β ‖− B → C. Thus
α ‖− (A ⇒ B → C). We leave the axioms and remaining rules as easy exercises. ⊣

Examples: If K is a Kripke model with empty relation ≺, then K |= E1, where
E1 is the theory axiomatized by ⊤ → ⊥. If K is a Kripke model with maximal
relation ≺, then K |= CPC.

The Completeness Theorem, the converse of Soundness above, requires us to
show that there are sufficiently many Kripke models. Below we initially construct a
single Kripke modelU, essentially only dependent of the cardinality of the language.
From it we construct sufficiently many models by just taking restrictions on the
underlying set of worlds. A set of sequents Γ is prime if Γ ⊢ A ∨ B implies that
Γ ⊢ A or Γ ⊢ B, for all A and B. Obviously, Γ is prime if and only if Cl(Γ) is prime.

Lemma 3.2 Let Γ ∪ {γ} be a set of sequents such that Γ 6⊢ γ. Then there exists a
sequent theory ∆ ⊇ Γ such that ∆ is prime and ∆ 6⊢ γ.

Proof. Let Λ be the collection of sets of sequents Γ′ ⊇ Γ such that Γ′ 6⊢ γ. Then
Λ is a nonempty set partially ordered by inclusion. Obviously, Λ is closed under
unions of chains so, by Zorn’s Lemma, contains a maximal element, say ∆. Clearly,
∆ is a sequent theory. Suppose ∆ ⊢ A∨B such that ∆∪{A} ⊢ γ and ∆∪{B} ⊢ γ.
We can write γ as C ⇒ D. By the Functional Completeness Proposition 2.2 we see
that ∆ proves the sequents A∧C ⇒ D and B ∧C ⇒ D. So ∆ ⊢ (A∨B)∧C ⇒ D,
and thus ∆ ⊢ γ; contradiction. So ∆∪{A} 6⊢ γ or ∆∪{B} 6⊢ γ hence, by maximality,
A ∈ ∆ or B ∈ ∆. Thus ∆ is prime. ⊣

Let U be the Kripke model with as set of worlds the collection W = WU of
consistent prime sequent theories. We set Γ ≺ ∆ exactly when Γ ⊢ A → B implies
∆ ⊢ A ⇒ B, for all A and B. To each atom p we assign as set I(p) = IU(p) the
collection {Γ ∈ W | p ∈ Γ}. Given a set of sequents Γ, let Γ(1) = {A ⇒ B | Γ ⊢ A →
B}. Lemma 3.2 immediately implies that Γ(1) = Cl(Γ(1)) =

⋂
{∆ ∈ W | Γ ≺ ∆},

for all Γ ∈ W . So Γ ≺ ∆ exactly when Γ(1) ⊆ ∆, for all Γ,∆ ∈ W . Note that Γ ≺ ∆
implies Γ ⊆ ∆. The Kripke model U is called the universal model. Its construction
only depends on the cardinality of the set of atoms of the language.

Lemma 3.3 Let Γ be a set of sequents. Then Γ(1) ⊢ A ⇒ B if and only if Γ ⊢
A → B.

Proof. From right to left immediately follows from the definition. The converse
follows from the Formalization Proposition 2.3. ⊣

Lemma 3.4 For all Γ ∈ WU and formulas A we have Γ ⊢ A, if and only if Γ ‖− A.
For all sequents γ we have Γ ⊢ γ implies Γ ‖− γ.

Proof. We complete the proof of both statements simultaneously, by induction
on the complexity of γ. If γ equals ⇒ p for some atom p, apply the definition of
I(p); the cases where p = ⊤ or p = ⊥ are trivial. Suppose γ equals A ⇒ B with
A 6= ⊤ and Γ ⊢ γ. By the Functional Completeness Proposition 2.2 we have Γ ⊢ γ,
if and only if Γ ∪ {A} ⊢ B. So if ∆ � Γ is such that ∆ ⊢ A, then ∆ ⊇ Γ ∪ {A},
and thus ∆ ⊢ B. Apply induction: Γ ‖− γ. Suppose Γ ⊢ A → B. If ∆ ≻ Γ,
then ∆ ⊢ A ⇒ B so, by induction, ∆ ‖− A ⇒ B. So Γ ‖− A → B. Conversely,
suppose Γ ‖− A → B. Then, by induction, ∆ ⊢ A implies ∆ ⊢ B, for all ∆ ≻ Γ.
So Γ(1) ∪ {A} ⊢ B hence, by Functional Completeness, Γ(1) ⊢ A ⇒ B. And thus
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Γ ⊢ A → B. Suppose Γ ⊢ A∨B. Then, by primality, Γ ⊢ A or Γ ⊢ B. By induction,
Γ ‖− A∨B. The converse is just as easy. We leave the remaining cases as exercises.
⊣

Lemma 3.4 cannot be extended to an equivalence for all sequents. Here is why
the obvious proof fails: Suppose Γ ‖− A ⇒ B, and suppose that Γ∪{A} 6⊢ B. Then
there exists a consistent prime sequent theory ∆ ⊇ Γ ∪ {A} such that ∆ 6⊢ B. By
the Lemma, ∆ ‖− A and ∆ 6‖− B, hence ∆ 6‖− A ⇒ B. But we cannot guarantee
that ∆ � Γ, so we cannot conclude that Γ∪{A} 6⊢ B leads to a contradiction. Here
is an explicit example: Let p be an atom, and let Γ be a prime theory extending E1

such that Γ 6⊢ p and Γ 6⊢ p ⇒ ⊥ (in fact, the prime theory E1 itself will do). Then
Γ(1) is inconsistent, so Γ ‖− p ⇒ ⊥ in the universal model U.

For each sequent theory Γ, Let UΓ be the model, obtained from U, by restricting
the underlying set of worlds to all ∆ � Γ. A Kripke model is called rooted if there
is a node α ∈ W such that α ≺ β, for all β 6= α. In that case K |= γ if and only if
α ‖− γ, for all sequents γ. The node α is called the root. If Γ is a consistent prime
theory, then UΓ is a rooted model with root Γ. The forcing relation ‖− doesn’t
change with respect to the nodes of UΓ, since, for all Kripke models, the only other
nodes that the interpretation at a node α depends on are the nodes β ≻ α.

Theorem 3.5 (Completeness) Let Γ ∪ {γ} be a set of sequents. Then Γ |= γ

implies Γ ⊢ γ.

Proof. Let γ equal A ⇒ B, and suppose Γ 6⊢ γ. By Lemma 3.2 and Functional
Completeness, there is a consistent prime sequent theory ∆ ⊇ Γ ∪ {A} such that
∆ 6⊢ B. Then U∆ |= Γ, but U∆ 6|= γ. So Γ 6|= γ. ⊣

As an immediate consequence we have:

Theorem 3.6 (Compactness) A set of sequents Γ has a Kripke model, if and
only if each finite subset of Γ has a Kripke model.

A sequent theory Γ is complete with respect to a class of Kripke models K, if
for all sequents A ⇒ B we have Γ ⊢ A ⇒ B, if and only if K |= A ⇒ B for all
K ∈ K. By the Completeness Theorem 3.5 we have, for each set of sequents Γ,
a class of Kripke models with respect to which Γ is complete. The theory Γ is
strongly complete with respect to a class K of models, if Γ is complete with respect
to K, and if, moreover, for all sequent theories ∆ ⊇ Γ there is a subclass of models
of K such that ∆ is complete with respect to the subclass. We sometimes write
weakly complete instead of complete to accentuate the distinction between strong
completeness and completeness.

The methods used above immediately imply:

Theorem 3.7 (Strong Completeness) BPC is strongly complete with respect to
the class of rooted Kripke models.

Each node α of a Kripke model K provides us with two one-node models, Kr
α

and Ki
α, both with α ∈ Iα(p) if and only if α ∈ I(p). We can make the relation ≺α

either reflexive or irreflexive, after which the model is completely determined. In
the first case, Kr

α is a model of Classical Propositional Calculus CPC; in the second
case Ki

α is a model of E1, the theory axiomatized by ⊤ → ⊥. Let A be a formula
without implication →, K be a Kripke model, and α ∈ W . Then the inductive
definition of the extension of ‖− to all formulas immediately implies that α ‖− A if
and only if Kr

α |= A if and only if Ki
α |= A. Recall that a sequent A ⇒ B is called

geometric when A nor B contains implication.
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Proposition 3.8 Let A ⇒ B be a geometric sequent, and K a Kripke model. To
each node α assign randomly Kα = Kr

α or Kα = Ki
α. Then K |= A ⇒ B, if and

only if Kα |= A ⇒ B, for all α ∈ W .

Proof. Let A ⇒ B be a geometric sequent. If α ‖− A ⇒ B, then β ‖− A implies
β ‖− B, for all β � α. So Kβ |= A implies Kβ |= B, for all β � α. For the converse,
note that all steps above are reversible. ⊣

So the validity of geometric sequents in a model K is determined by the set
of nodes K and its subsets I(p), but is otherwise independent of the particular
transitive relation ≺ on K.

Given a Kripke model K with root α, let V(K) be the model formed from K
by adding a new root node α0 ≺ α which is reflexive exactly when α is, and such
that α0 ‖− p exactly when α ‖− p. The following construction is more general: Let
S be a subset of {p | α ‖− p}. Then VS(K) is the extension of K with a new root
α0 as before, except that α0 ‖− p if and only if p ∈ S.

Lemma 3.9 Let K be a rooted Kripke model. If K has an irreflexive root, then for
all S and all formulas A and B, VS(K) |= A → B if and only if K |= A ⇒ B. If
K has a reflexive root, then V(K) |= A ⇒ B if and only if K |= A ⇒ B.

Proof. Let α and α0 be the irreflexive roots of K and VS(K) respectively. Then
obviously α0 ⊢ A → B if and only if K |= A ⇒ B. Suppose α is reflexive, and let
α0 be the reflexive root of V(K). It suffices to prove that α0 ‖− A if and only if
α ‖− A, for all A. We complete the proof by induction on the complexity of A. The
only nontrivial step is for A equal to B → C. Obviously, if α0 ‖− A, then α ‖− A.
Suppose α ‖− A. From the reflexivity of α we get α ‖− B ⇒ C. By induction,
α0 ‖− B if and only if α ‖− B, and α0 ‖− C if and only if α ‖− C. So α0 ‖− B ⇒ C,
and thus α0 ‖− B → C. ⊣

A theory Γ is finitely strongly complete with respect to a class K of models, if Γ
is complete with respect to K, and if, moreover, for all sequent theories ∆ ⊇ Γ that
are generated by adding finitely many sequents, there is a subclass of models of K
such that ∆ is complete with respect to the subclass.

Theorem 3.10 Let Γ be a sequent theory, and let K be a class of rooted models with
respect to which Γ is finitely strongly complete. Then the following are equivalent:

(i) Γ is faithful.

(ii) If K ∈ K has an irreflexive root, and γ ∈ Γ is of the form (A1 → B1) ∧ . . . ∧
(An → Bn) ⇒ A0 → B0, then VS(K) |= γ, for some S.

(iii) If K ∈ K has an irreflexive root, and δ ∈ Γ, then V∅(K) |= δ or V(K) |= δ.

Proof. Obviously, (iii) implies (ii).
Assume (ii). To derive (i), let Γ ⊢ γ, where γ = (A1 → B1) ∧ . . . ∧ (An →

Bn) ⇒ A0 → B0, and set ∆ = Γ ∪ {A1 ⇒ B1, . . . , An ⇒ Bn}. We may assume ∆
to be consistent. Let K ∈ K be a model of ∆ with root α. It suffices to show that
K |= A0 ⇒ B0. If α is reflexive, then this immediately follows from Γ. So assume
that α is irreflexive. Consider the model VS(K) of the condition, with new root α0.
Then α0 ‖− A → B exactly when α ‖− A ⇒ B, for all A and B. Now VS(K) |= γ,
so α0 ‖− (A1 → B1) ∧ . . . ∧ (An → Bn) ⇒ A0 → B0. So α ‖− A0 ⇒ B0, and thus
K |= A0 ⇒ B0. By finite strong completeness, ∆ ⊢ A0 ⇒ B0.

Assume (i). To derive (iii), let K ∈ K have an irreflexive root, and let δ ∈ Γ.
Write δ = A ⇒ B. If K 6|= A, then VS(K) |= A ⇒ B for all S; so we may
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assume that K |= A. Additionally, we may assume that V∅(K) 6|= A ⇒ B. Let
α0 be the root of V∅(K). Then α0 ‖− A and α0 6‖− B. Up to provable equivalence
A equals a disjunction C1 ∨ . . . ∨ Cm of Ci’s that are conjunctions of atoms and
implications. So α0 ‖− C for some C ∈ {C1, . . . , Cm}. By Transitivity, C ⇒ B ∈ Γ.
Since α0 6‖− p for all atoms p, C must be equal to a conjunction of implications
(A1 → B1) ∧ . . . ∧ (An → Bn), so K |= Ai ⇒ Bi for all i. So VS(K) |= C for all S.
Up to provable equivalence B equals a conjunction D1 ∧ . . . ∧Dm of Di’s that are
disjunctions of atoms and implications. Let D ∈ {D1, . . . , Dm}. It suffices to show
that V(K) |= D. We have K |= C ⇒ D and, by Transitivity, C ⇒ D ∈ Γ. If K |= p

for some atom p in the disjunction D, then V(K) |= D. Otherwise, K 6|= p for all
atoms p in the disjunction. Replace all such leftover atoms p by implications ⊤ → p.
The resulting disjunction is called E. Clearly, E is a disjunction of implications
(F1 → G1)∨ . . .∨ (Fk → Gk), C ⇒ E ∈ Γ, K |= C ⇒ E, and V(K) |= C. It suffices
to show that V(K) |= E. If for some i we have K 6|= Fi and K |= Fi → Gi, then
V(K) |= E. So we may assume that there is m ≤ k such that K |= Fi exactly when
i ≤ m, and K 6|= Fi → Gi at least for all i > m. Now Γ proves

(⊤ →
∧

i≤m

Fi)∧C ⇒
∨

i≤m

(⊤ → Gi)∨
∨

i>m

(⊤ → (Fi → Gi)) ⇒ ⊤ → (
∨

i≤m

Gi∨
∨

i>m

(Fi → Gi)).

By faithfulness,

Γ ∪ {
∧

i≤m

Fi, A1 ⇒ B1, . . . , An ⇒ Bn} ⊢
∨

i≤m

Gi ∨
∨

i>m

(Fi → Gi).

So K |= Gi for some i ≤ m, and thus V(K) |= E. ⊣

As a corollary we get:

Proposition 3.11 Let Γ be a set of sequents such that its class of Kripke models
is closed under the following transformation:

If K is a rooted Kripke model of Γ with irreflexive root, then so is
VS(K), for some S.

Then Γ is faithful.

Before we go to the main applications below, here are some illustrative appli-
cations of Proposition 3.11. An end node of a Kripke model is a node α such that
there is no β such that α ≺ β. Note that reflexive nodes cannot be end nodes. First
example: Let Γ1 be axiomatized by the sequent ⊤ → ⊥ ⇒ ⊥. The models of Γ1

are exactly those without end nodes. Obviously this class satisfies the condition of
Proposition 3.11. So Γ1 is faithful. Second example: Let Γ2 be axiomatized by the
sequent (⊤ → ⊥) → ⊥ ⇒ ⊤ → ⊥. The models of Γ2 are exactly those in which
each node is an endnode or is below an endnode, that is, the endnodes are dense.
Obviously this class satisfies the condition of Proposition 3.11. So Γ2 is faithful.
Third example: Let Γ3 be axiomatized by all axioms of the form p ⇒ ⊤ → ⊥,
where p ranges over all atoms. Then the models of Γ3 are exactly those for which
α 6‖− p for all atoms p and all non-end nodes α. Obviously this class satisfies the
condition of Proposition 3.11 with S = ∅. So Γ3 is faithful.

A sequent theory Γ is geometric if it is axiomatizable by a set of geometric
sequents.

Theorem 3.12 Geometric theories are faithful.
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Proof. Let Γ be a geometric theory, and let K be a rooted model of Γ with root
α. We may assume that Γ is a set of geometric sequents. For the new root α0 of
V(K), we have

Kα0
= Kα.

So, by Proposition 3.8, V(K) |= Γ. Apply Proposition 3.11. ⊣

Since BPC is axiomatizable by the empty set, we immediately get:

Theorem 3.13 BPC is faithful.

Given a sequent theory Γ, let Γp = Cl({A → B | A ⇒ B ∈ Γ}). Then, by
Faithfulness, Γ = (Γp)

(1). If Γ = Ψ(1) for some sequent theory Ψ, then Γp ⊆ Ψ. So
Γp is the smallest sequent theory Ψ such that Γ = Ψ(1). In fact, Γ 7→ Γ(1) is the
right adjoint of Γ 7→ Γp on the lattice of sequent theories.

Now we can show how to reduce derivability from sequent theories to derivability
of a single sequent. Let Γ∪{A ⇒ B} be a set of sequents. Then, by Theorem 3.13,
Γ ⊢ A ⇒ B exactly when there is a finite sequence C1 ⇒ D1, . . . , Cn ⇒ Dn ∈ Γ
such that (C1 → D1) ∧ . . . ∧ (Cn → Dn) ⇒ A → B is derivable in BPC.

Another application of Proposition 3.11 is:

Theorem 3.14 FPC is faithful.

Proof. Let K be a rooted Kripke model of FPC, and let α0 be the root of V(K).
Suppose α0 ‖− (⊤ → A) → A. Then K |= (⊤ → A) ⇒ A and thus, by Löb’s Rule,
K |= A. So α0 ‖− ⊤ → A. So V(K) satisfies Löb’s Axiom, hence is a model of
FPC. Apply Proposition 3.11. ⊣

A set of sequents Γ′ is a geometric extension of a set Γ if there exists a set ∆ of
geometric sequents such that Γ′ is axiomatizable by Γ ∪∆. A refined consequence
of Proposition 3.11 is:

Theorem 3.15 Let Γ be a sequent theory, and let K be a class of rooted models
with respect to which Γ is strongly complete. Suppose that for all K ∈ K, if K has
irreflexive root, then V(K) |= Γ. Then all geometric extensions of Γ are faithful.

Proof. One easily verifies that if the class K of Kripke models of Γ satisfies
the given property, then so does the subclass of Kripke models of each geometric
extension. ⊣

In particular, all geometric extensions of FPC are faithful. Theorem 3.15 cannot
be weakened by including the models V∅(K) as in Theorem 3.10. For example, let
p be an atom, and let Γ and ∆ be axiomatized by p and p ⇒ ⊤ → ⊥ respectively.
By Proposition 3.11, both theories are faithful, and Γ is geometric. But their union
generates E1.

Obviously the collection of sequent theories is closed under infinite intersections.

Lemma 3.16 Let {Γα}α be a collection of sequent theories such that Γα is complete
with respect to the class of Kripke models Kα. Then

⋂
α Γα is complete with respect

to the class
⋃

α Kα.

Proof. If
⋂

α Γα ⊢ A ⇒ B, then certainly Γα ⊢ A ⇒ B, for all α; so K |= A ⇒
B, for all α and K ∈ Kα. Conversely, if

⋂
α Γα 6⊢ A ⇒ B, then, since

⋂
α Γα is

also closed under derivability, Γα 6⊢ A ⇒ B for some α. So K 6|= A ⇒ B, for some
K ∈ Kα ⊆

⋃
α Kα. ⊣
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Lemma 3.16 fails if we replace completeness by strong completeness: There is
a countable collection of sequent theories {Γn}n satisfying Γn ⊇ IPC for all n,
such that Γn is strongly complete for the class of rooted reflexive Kripke models
with at most n nodes (see, for example, [9]). Moreover, IPC is complete, but not
strongly complete, for the class of finite reflexive Kripke models. So ∩nΓn = IPC
is a counterexample. However, for finite intersections we have:

Proposition 3.17 Let {Γα}α be a finite collection of sequent theories such that
the intersection is faithful, and for all α, Γα is strongly complete with respect to
the class of Kripke models Kα. Then

⋂
α Γα is strongly complete with respect to the

class
⋃

α Kα.

Proof. Suppose Γα ∪ {Aβ ⇒ Bβ}β∈S ⊢ A ⇒ B, for all α. Then there are finite
subsets R(α) of S such that

Γα ⊢
∧

β∈R(α)

(Aβ → Bβ) ⇒ A → B

for all α. Set P = ∪αR(α). Then P is finite, and
⋂

α

Γα ⊢
∧

β∈P

(Aβ → Bβ) ⇒ A → B.

So, by faithfulness,
⋂

α Γα ∪ {Aα ⇒ Bα}α∈S ⊢ A ⇒ B. ⊣

A small twist in the completeness condition above gives:

Proposition 3.18 Let {Γα}α be a collection of sequent theories such that the in-
tersection is faithful, and for all α, Γα is finitely strongly complete with respect to
the class of Kripke models Kα. Then

⋂
α Γα is finitely strongly complete with respect

to the class
⋃

α Kα.

Proof. As for Proposition 3.17, except that S itself is already finite. ⊣

Let us write ∆ ⊑ Γ whenever Γ proves all sequents and rules of ∆. Obviously, ⊑
is a partial order on the collection of theories. If ∆ is a sequent theory, then this is
equivalent to Cl(∆) ⊆ Cl(Γ). If ∆ contains closure rules, then the situation is more
subtle. We illustrate this through an example. By Theorem 3.13 BPC is faithful.
This implies, among other things, that if BPC ⊢ ⊤ → A, then BPC ⊢ A. Now let
Γ be the theory axiomatized by the additional rule schema

⊤ → A
A

.

Then Cl(Γ) = Cl(∅). But Γ is a proper extension of BPC, that is, the reverse of
∅ ⊑ Γ is false. Proof: The theory E1, axiomatized by the axiom sequent ⊤ → ⊥,
is consistent, and thus a consistent extension of BPC. But it is not a consistent
extension of Γ. For if E1 were an extension of Γ, then E1 ⊢ ⊥, so it would be
inconsistent; contradiction. This example, and Propositions 2.3 and 2.2, explain
why sequent theories are much easier than theories in general.

4 Special Kripke Models

A rooted Kripke model is a tree model if for each node the collection of predecessors
forms a finite linearly ordered set. Let K be a rooted Kripke model, and let I be a
downward closed subset of the collection of nodes of K, that is, if α ≺ β ∈ I, then
α ∈ I. We construct the tree model K(I) as follows: As set of worlds W (I) we have
all sequences π = (π0, . . . , πn) of worlds πi ∈ W of K satisfying:
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• πi ≺ πi+1, for all i; and

• πn−1 ∈ I.

So each sequence has at most its last entry from W \ I. We define a relation ≺I on
W (I) by π ≺I σ if either π is a proper initial segment of σ, or π and σ have the
same length, say n, such that πi = σi for all i < n, and πn and σn are elements
of W \ I such that πn ≺ σn. One easily verifies that ≺I is a transitive relation.
Note that if I = ∅, then the transitive sets (W,≺) and (W (I),≺I) are isomorphic
in the obvious way. Define the forcing relation ‖− I on K(I) by π ‖− Ip if and only
if πn ‖− p, for all π = (π0, . . . , πn) and atoms p.

Lemma 4.1 Let K be a Kripke model, and let I be a downward closed subset of the
collection of nodes of K. Then for each π = (π0, . . . , πn) ∈ W (I), and each sequent
γ, we have π ‖− Iγ, if and only if πn ‖− γ.

Proof. The statement is clearly valid for all π = (π0, . . . , πn) where πn ∈ W \ I.
Moreover, it suffices to prove the statement for formulas A only. We complete the
proof by induction on the complexity of A. The case for atoms follows from the
definition, and the cases for ⊤ and ⊥ are trivial. The induction steps where A is a
conjunction or a disjunction are also easy. Let A = B → C and π = (π0, . . . , πn)
with πn ∈ I. If π 6‖− IA, then there is a sequence π′ properly extending π, with
last entry λ, such that π′ ‖− IB and π′ 6‖− IC. So πn ≺ λ. By induction, λ ‖− B

and λ 6‖− C. So πn 6‖− B → C. Conversely, suppose πn 6‖− B → C. There exists
λ ≻ πn such that λ ‖− B and λ 6‖− C. Set π′ = (π0, . . . , πn, λ) ≻I π. By induction,
π′ ‖− IB and π′ 6‖− IC. So π 6‖− IB → C. ⊣

Corollary 4.2 BPC is strongly complete for the class of irreflexive trees.

Proof. Apply Lemma 4.1 with I = W . ⊣

Underlying each Kripke model K = 〈WK, IK〉 is a frame WK = W = (W,≺)
consisting of a set W of nodes, or worlds, with a transitive binary relation ≺.
A transitive set is turned into a Kripke model by adding an assignment function
I = IK or, equivalently, by adding a forcing relation ‖− . Let Γ be a set of sequents.
We write (W,≺) |= Γ, that is, (W,≺) models Γ, if K |= Γ, for all Kripke models
K with (W,≺) as underlying transitive set. Note that, despite what Corollary 4.2
may suggest, there is no transitive set (W ≺) with an irreflexive node such that
(W,≺) |= IPC. Let (W0,≺0) and (W1,≺1) be two transitive sets. A function
f : W0 → W1 is a p-morphism of transitive sets if the following conditions hold:

• f is a morphism, that is, f(x) ≺1 f(y) whenever x ≺0 y; and

• for all x ∈ W0 and y ∈ W1, if f(x) ≺1 y, then there exists z ∈ W0 such that
x ≺0 z and f(z) = y.

The following, when combined with an embedding into K4, essentially is a special
case of [8]:

Proposition 4.3 Let f be a p-morphism from (W0,≺0) onto (W1,≺1), and let
‖− 1 be a forcing relation on (W1,≺1). Define ‖− 0 on (W0,≺0) by x ‖− 0p exactly
when f(x) ‖− 1p, for atomic p. Then ‖− 0 is a forcing relation on (W0,≺0) such
that for all x ∈ W0 and sequents γ we have x ‖− 0γ if and only if f(x) ‖− 1γ.
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Proof. From f being order preserving we immediately see that ‖− 0 is a forcing
relation on (W0,≺0). We complete the proof by induction on the complexity of
γ. First the cases where γ equals ⊤ ⇒ B. The induction steps for B atomic, a
conjunction, or a disjunction, are trivial. Let B equal C → D. Suppose x ‖− 0C →
D, and f(x) ≺1 y ‖− 1C. To show: y ‖− 1D. But y = f(z) for some z ≻0 x so,
by induction, z ‖− 0C. So z ‖− 0D and thus, again by induction, y = f(z) ‖− 1D.
Conversely, suppose f(x) ‖− 1C → D, and x ≺0 z ‖− 0C. Then, by induction,
f(x) ≺1 f(z) ‖− 1C, so also f(z) ‖− 1D. Thus, again by induction, z ‖− 0D. Next
the cases where γ equals A ⇒ B with A 6= ⊤. Suppose x ‖− 0A ⇒ B, and f(x) �1

y ‖− 1A. To show: y ‖− 1B. The further proof is identical to the one above, with A

and B replacing C and D. Conversely, suppose f(x) ‖− 1A ⇒ B, and x �0 z ‖− 0A.
Again the proof proceeds exactly along the lines above, with A and B replacing C

and D. ⊣

As a corollary we get:

Proposition 4.4 Let Γ be a set of sequents, and let f be a p-morphism from
(W0,≺0) onto (W1,≺1). If (W0,≺0) |= Γ, then (W1,≺1) |= Γ.

Proof. Suppose 〈(W1,≺1), ‖− 1〉 6|= Γ, and let ‖− 0 be the forcing relation on
(W0,≺0) as in Proposition 4.3. Then 〈(W0,≺0), ‖− 0〉 6|= Γ. ⊣

Application: Let (W,≺) be a nonempty transitive set such that for all x ∈ W

there exists some y ≻ x. Then if (W,≺) |= Γ, then Γ ∪ CPC is consistent. Proof:
Take the obvious p-morphism from (W,≺) onto the singleton reflexive transitive
set, and apply Proposition 4.4.

Given a set of sequents Γ, define Sub(Γ) to be the set of sequents A ⇒ B

for which there are sequents A1 ⇒ A2 and B1 ⇒ B2 in Γ such that A equals
⊤ or is a subformula of one of the Ai, and B is a subformula of one of the Bi.
The transformation K 7→ KΓ below reduces Kripke models in such a way that
essentially only the necessary structure involving the set Γ is left. Given a node
α of K, define [α]Γ = [α] ⊆ Sub(Γ) by [α] = {A ⇒ B ∈ Sub(Γ) | α ‖− A ⇒ B}.
Set WΓ = {[α] | α ∈ W}, and [α] ≺Γ [β] if and only if [α] ⊆ [β] and, additionally,
A → B ∈ [α] and A ∈ [β] imply B ∈ [β], for all A and B. Clearly, ≺Γ is a transitive
relation on WΓ. For atomic p set [α] ‖− Γp if and only if p ∈ [α]. This makes
KΓ = 〈(WΓ,≺Γ), ‖− Γ〉 a Kripke model over the sublanguage Lγ whose atoms are
just those that occur in formulas of Γ. The map α 7→ [α] is a morphism of (W,≺)
onto (WΓ,≺Γ). If K is a rooted model, then so is KΓ. We call KΓ the minimal
model of K relative to Γ. If Γ equals the class of all sequents of the language L,
then we call KΓ = KL just the minimal model of K.

Proposition 4.5 Let K be a Kripke model, and let Γ be a set of sequents. Then
for all nodes α and sequents γ ∈ Sub(Γ) the following are equivalent:

• α ‖− γ;

• γ ∈ [α]; and

• [α] ‖− Γγ.

Proof. The first and second items are equivalent by definition. We complete the
proof by induction on the complexity of γ. First the cases where γ equals ⊤ ⇒ B.
The induction steps for B atomic, a conjunction, or a disjunction, are trivial. Let
B equal C → D. Suppose α ‖− C → D, and [α] ≺Γ [β] ‖− ΓC. To show: [β] ‖− ΓD.
By induction, β ‖− C. But C → D ∈ [α], soD ∈ [β]. And so β ‖− D and thus, again

16



by induction, [β] ‖− ΓD. Conversely, suppose [α] ‖− ΓC → D, and α ≺ β ‖− C. To
show: β ‖− D. By induction, [α] ≺Γ [β] ‖− ΓC, so also [β] ‖− ΓD. Thus, again by
induction, β ‖− D. Next the cases where γ equals A ⇒ B with A 6= ⊤. Suppose
α ‖− A ⇒ B, and [α] �Γ [β] ‖− ΓA. To show: [β] ‖− ΓB. The further proof is
identical to the one above, with A and B replacing C and D. Conversely, suppose
[α] ‖− ΓA ⇒ B, and α � β ‖− A. Again the proof proceeds exactly along the lines
above, with A and B replacing C and D. ⊣

A Kripke model is finite if its underlying transitive set is finite. If the set of
sequents Γ is finite, then KΓ is finite, for all Kripke models K. So Proposition 4.5
immediately implies

Theorem 4.6 BPC is complete with respect to the class of finite Kripke models.

BPC is not strongly complete with respect to the class of finite Kripke models.
For example, let p0, p1, p2, . . . be a countably infinite sequence of atoms, and let
Γ = {(pi ↔ pj) ⇒ p0 | 0 < i < j}. If K is a finite model of Γ, then K |= p0; but
Γ 6⊢ p0. For a different proof of Theorem 4.6, see [10]. The Theorem and its proof
also allow us to show that derivability in BPC is decidable, see [10].

Proposition 4.7 For all n, let Fn be the sequent theory axiomatized by ⊤n+1⊥ ⇒
⊤n⊥. Then Fm ⊆ Fn whenever m ≥ n, and ∩nFn = BPC.

Proof. Obviously, Fn ⊇ Fn+1. Additionally, Fn holds in all models where the
longest properly ascending path has length at most n. So ∩nFn is valid in all finite
Kripke models, hence equals BPC. ⊣

Even if KΓ is finite, we don’t have that for each node [α]Γ there is a formula
A such that [β]Γ ‖− ΓA if and only if [α]Γ �Γ [β]Γ. For example, let K have
as underlying transitive set two nodes, α and β, such that α is reflexive and β

is irreflexive, and no other relations between the nodes. Set α ‖− p if and only
if β ‖− p, for all atoms p. Suppose that α ‖− A. Up to provable equivalence we
may assume A to be a disjunction A1 ∨ . . . ∨ An of conjunctions Ai of atoms and
implications. So α ‖− Ai for some i. Now β ‖− p for all atoms p of this conjunction,
and β ‖− ⊤ → ⊥, so β also satisfies all implications. So β ‖− Ai, and thus β ‖− A.
But we do have:

Lemma 4.8 Let K be a Kripke model, and let Γ be a set of sequents. Let [α] 6= [β]
be nodes of KΓ. Then there exists a formula A such that [α] ‖− ΓA and [β] 6‖− ΓA,
or [α] 6‖− ΓA and [β] ‖− ΓA. Moreover, either A ∈ Γ, or A equals A1 → A2 such
that A1 ⇒ A2 ∈ Γ.

Proof. Given [α] 6= [β], there is a sequent γ ∈ Sub(Γ) such that [α] ‖− Γγ

and [β] 6‖− Γγ, or [α] 6‖− Γγ and [β] ‖− Γγ. By symmetry we may assume that
[α] 6‖− Γγ and [β] ‖− Γγ. There are formulas C and D such that γ equals C ⇒ D.
If [α] 6‖− ΓC → D, then we can choose A equal to C → D; so we may assume that
[α] ‖− ΓC → D. So [α] ‖− ΓC and [α] 6‖− ΓD. If [β] ‖− ΓC, then set A equal to D.
Otherwise, set A equal to C. ⊣

Lemma 4.9 Let Γ be a set of sequents, and K a class of Kripke models of Γ such
that for every rooted Kripke model K of Γ we have KL ∈ K. Then Γ is strongly
complete with respect to K. More generally, let J and K be classes of rooted Kripke
models of Γ such that Γ is (strongly) complete with respect to J . Suppose that
KL ∈ K, for all K ∈ J . Then Γ is (strongly) complete with respect to K.
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Proof. We only prove the first claim. Let ∆∪{γ} be a set of sequents such that
∆ ⊇ Γ and ∆ 6⊢ γ. Then there is a rooted Kripke model K |= ∆ such that K 6|= γ.
Then, by Proposition 4.5, we have KL |= Γ and KL 6|= γ. ⊣

Let LBPC be the extension of BPC with the schema (A → B)∨((A → B) → A).
A Kripke model is linear if for all pairs of nodes α and β we have α ≺ β or α = β

or α ≻ β. Albert Visser proved in [10]:

Theorem 4.10 LBPC is strongly complete with respect to the class of rooted linear
Kripke models.

Proof. One easily verifies that all linear models are models of LBPC. Let K be
a rooted Kripke model of LBPC with root α0, and let [α] 6= [β] be two nodes of the
minimal model KL. By Lemma 4.8 we may assume that there is a formula A such
that [α] 6‖− LA and [β] ‖− LA. To show: [α] ≺L [β]. We may assume that [α] 6= [α0],
for [α0] is the root of KL; so [α0] ≺L [α]. Suppose [α] ‖− LB → C and [β] ‖− LB.
We must show that [β] ‖− LC. There are two possibilities. First suppose [α] 6‖− B.
Then [α0] ≺L [α] 6‖− LB → C ⇒ B. So, by LBPC, [β] ≻L [α0] ‖− LB → C,
and thus [β] ‖− LC. Otherwise, suppose [α] ‖− LB. Then [α] ‖− L⊤ → C, hence
also [α] ‖− LA → C. Then [α0] ≺L [α] 6‖− LA → C ⇒ A. So, by LBPC, [β] ≻L

[α0] ‖− LA → C, and thus [β] ‖− LC. Next we must show [α] ⊆ [β]. Let B ∈ [α].
Then [α] ‖− LB, so [α0] 6‖− LB → A. By LBPC, therefore, [α0] ‖− L(B → A) → B.
Since [α0] ≺L [β] ‖− LB → A, we have [β] ‖− LB. Finally, let B ⇒ C ∈ [α]. Then
B → C ∈ [β]. Suppose B ∈ [β]. Then, as above, C ∈ [β]. So B ⇒ C ∈ [β]. And
thus [α] ⊆ [β]. ⊣

Intuitionistic Propositional Calculus IPC is axiomatized by BPC plus the se-
quent schema ⊤ → A ⇒ A. The following is well-known, and can also be shown
using the minimal model construction:

Theorem 4.11 IPC is strongly complete with respect to the class of reflexive rooted
Kripke models.

Proof. Obviously, all reflexive models are models of IPC. Let K be a rooted
Kripke model of IPC with root α0. So [α0] is the root of KL. Let [α] be a node.
Clearly, [α] ⊆ [α]. Suppose that A → B ∈ [α] and A ∈ [α]. Then ⊤ → B ∈ [α] thus
also, since KL is a model of IPC, B ∈ [α]. So [α] ≺L [α]. ⊣

As an easy consequence we get:

Corollary 4.12 IPC is complete with respect to the class of finite reflexive rooted
Kripke models.

Proof. If K is reflexive, then so is KΓ. So if, additionally, Γ is finite, then KΓ

is a finite reflexive model. ⊣

In [10] the theorem below is also proved.

Theorem 4.13 FPC is complete with respect to the class of finite rooted irreflexive
Kripke models.

Proof. Clearly, each finite irreflexive Kripke model is a model of FPC. Let
FPC 6⊢ γ, for some sequent γ. There is a rooted Kripke model K of FPC such
that K 6|= γ. Let Γ be the finite collection of sequents generated by γ. Then KΓ

is a finite rooted model such that KΓ 6|= γ. Let Ki be the finite model obtained
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from KΓ by removing the diagonal from ≺Γ, that is, [α] ≺i [β] exactly when both
[α] ≺Γ [β] and [α] 6= [β]. Then Ki is a finite irreflexive rooted Kripke model of
FPC. It suffices to show that Ki |= δ if and only if KΓ |= δ, for all sequences δ ∈ Γ.
We complete the proof by induction on the complexity of δ. Since �i and �Γ are
equal, the only nontrivial induction step is for →. Suppose [α] ‖− ΓA → B. Then
[β] ‖− ΓA implies [β] ‖− ΓB, for all [β] ≻Γ [α]. If [β] ≻i [α], then certainly [β] ≻Γ [α]
so, by induction, [β] ≻i [α] and [β] ‖− iA imply [β] ‖− iB. Thus [α] ‖− iA → B.
Conversely, suppose [α] 6‖− ΓA → B. To show: [α] 6‖− iA → B. The only difficult
case occurs when [α] ‖− ΓA, [α] 6‖− ΓB, [α] ≺Γ [α], and [β] ‖− ΓB for all [β] ≻i [α].
Let α ≺ β1 � β2 ‖− A → B in the original model K. Since A → B ∈ Γ, we have
[α] ≺i [β2], hence [β2] ‖− ΓB ∈ Γ. So β2 ‖− B. Therefore β1 ‖− A → B ⇒ B. So
α ‖− (A → B) → B. But K is a model of FPC, so it satisfies (A → B) → B ⇒
(⊤ → B) → B ⇒ ⊤ → B ⇒ A → B. So α ‖− A → B, and thus [α] ‖− A → B;
contradiction. ⊣

As shown in [10], all models whose underlying transitive sets are irreflexive and
co-wellfounded, are models of FPC.

Proposition 4.14 For all n, let En be the sequent theory axiomatized by ⊤n⊥.
Then Em ⊆ En whenever m ≥ n, and ∩nEn = FPC.

Proof. Obviously, En ⊇ En+1 ⊇ FPC. Additionally, En holds in all irreflexive
models where the longest properly ascending path has length at most n. So ∩nEn

is valid in all finite irreflexive Kripke models, hence equals FPC. ⊣

Classical Propositional Calculus CPC is the extension of IPC that is axiomati-
zable by the schema A∨¬A. We leave it as an easy exercise to prove the following
well-known result using minimal models.

Theorem 4.15 CPC is strongly complete with respect to the class of one-node re-
flexive models.

Recall that E1 is the extension of BPC axiomatizable by ⊤ → ⊥. The following
doesn’t need the minimal model construction, but it falls in the same category of
results.

Theorem 4.16 E1 is strongly complete with respect to the class of one-node ir-
reflexive models.

Proof. Obviously, all irreflexive singleton models are models of E1. Let K be a
rooted Kripke model of E1 with root α0 ‖− ⊤ → ⊥. If there were an other node β,
then α0 ≺ β ‖− ⊥, contradiction. So α0 is the only node. If α0 ≺ α0, then α0 ‖− ⊥,
contradiction. So K is already a one-node irreflexive model. ⊣

5 Intermediate Logics

Each assignment τ from the atoms to the collection of all formulas extends to a
(substitution) map B 7→ τB from the language to itself by replacing all occurrences
of atoms p in a formula B by τp. A theory Γ is schematic if Γ ⊢ A ⇒ B implies
Γ ⊢ τA ⇒ τB, for all substitutions τ . An intermediate logic is a consistent schematic
sequent theory. The theories BPC, IPC, CPC, FPC, and E1 are all intermediate
logics. Below we prove that CPC and E1 are maximal among the intermediate
logics ordered by ⊆.
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Lemma 5.1 Let Γ∪{⊤ → ⊥ ⇒ ⊥} be a consistent set of sequents. Then Γ∪CPC
is consistent.

Proof. We may assume that Γ ⊢ ⊤ → ⊥ ⇒ ⊥. We first show that Γ ∪ IPC is
consistent. Let A1, . . . , An be a finite sequence of formulas. By the Compactness
Theorem 3.6, it suffices to show that ∆ = Γ∪ {⊤ → A1 ⇒ A1, . . . ,⊤ → An ⇒ An}
is consistent. Let K be a Kripke model of Γ. Then for all nodes α there is a node
β ≻ α. We construct an ascending sequence of nodes α0, . . . , αn as follows. Choose
α0 arbitrarily. Suppose αi−1 has been chosen. If αi−1 ‖− ⊤ → Ai ⇒ Ai, set αi

equal to any node β � αi−1. Otherwise, there is β � αi−1 such that β ‖− ⊤ → Ai.
Set αi equal to any node γ ≻ β. Then αn ‖− ∆.

Next, we may assume that Γ ⊢ IPC. Let A1, . . . , An be a finite sequence of
formulas. By the Compactness Theorem 3.6, it suffices to show that the set ∆ =
Γ ∪ {A1 ∨ ¬A1, . . . , An ∨ ¬An} is consistent. Let K be a Kripke model of Γ. For
all nodes α there are nodes β ≻ α. We construct an ascending sequence of nodes
α0, . . . , αn as follows. Choose α0 arbitrarily. Suppose αi−1 has been chosen. If
αi−1 ‖− ¬Ai, set αi equal to any node β � αi−1. Otherwise, there is β ≻ αi−1

such that β ‖− Ai. Set αi equal to any node γ � β. Then αn ‖− ∆. So Γ ∪ CPC is
consistent. ⊣

The following, when combined with an embedding into K4, essentially is a special
case of [5]:

Theorem 5.2 CPC and E1 are the only maximal theories among the intermediate
logics over a fixed language, ordered by ⊆. Each intermediate logic over this language
is contained in CPC or in E1.

Proof. First we show that CPC and E1 are maximal. Let Γ be an intermediate
logic, and let A ⇒ B be a sequent. Suppose CPC ⊆ Γ, and CPC 6⊢ A ⇒ B. So
there is a one-node reflexive model K such that K 6|= A ⇒ B. Then there is a
substitution map τ , assigning ⊤ or ⊥ to all atoms, such that CPC proves both
τA ⇔ ⊤ and τB ⇔ ⊥. Then Γ 6⊢ τA ⇒ τB, so, since Γ is schematic, Γ 6⊢ A ⇒ B.
So Γ = CPC. Next, suppose that E1 ⊆ Γ and E1 6⊢ A ⇒ B. There is a one-node
irreflexive model K such that K 6|= A ⇒ B. So there is a substitution map τ ,
assigning ⊤ or ⊥ to all atoms, such that E1 proves both τA ⇔ ⊤ and τB ⇔ ⊥.
Then Γ 6⊢ τA ⇒ τB, so, since Γ is schematic, Γ 6⊢ A ⇒ B. So Γ = E1.

Now let Γ be an arbitrary intermediate logic. If Γ∪E1 is consistent, then Γ ⊆ E1.
Otherwise, Γ ⊢ ⊤ → ⊥ ⇒ ⊥ is consistent so, by Lemma 5.1, Γ∪CPC is consistent.
So Γ ⊆ CPC. ⊣

We have the following dual to Lemma 5.1:

Proposition 5.3 Let Γ ∪ {(⊤ → ⊥) → ⊥ ⇒ ⊤ → ⊥} be a consistent set of
sequents. Then Γ ∪ E1 is consistent.

Proof. Suppose Γ ∪ E1 is inconsistent. Then Γ ⊢ (⊤ → ⊥) → ⊥. But then
Γ ∪ {(⊤ → ⊥) → ⊥ ⇒ ⊤ → ⊥} ⊢ ⊤ → ⊥, contradiction. ⊣

The theories Cl{⊤ → ⊥ ⇒ ⊥} and Cl{(⊤ → ⊥) → ⊥ ⇒ ⊤ → ⊥} are also
the smallest sequent theories that are relatively inconsistent with E1 and CPC
respectively:

Proposition 5.4 Let Γ be a sequent theory. Then Γ ∪ E1 is inconsistent exactly
when Γ ⊢ ⊤ → ⊥ ⇒ ⊥. And Γ∪CPC is inconsistent exactly when Γ ⊢ (⊤ → ⊥) →
⊥ ⇒ ⊤ → ⊥.
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Proof. The case for Γ∪E1 is obvious. By Lemma 5.1 Γ∪CPC is consistent if and
only if Γ ∪ {⊤ → ⊥ ⇒ ⊥} is consistent. If Γ ∪ {⊤ → ⊥ ⇒ ⊥} is inconsistent then,
by the Formalization Proposition 2.3, Γ ⊢ (⊤ → ⊥) → ⊥ ⇒ ⊤ → ⊥. Conversely, if
Γ ⊢ (⊤ → ⊥) → ⊥ ⇒ ⊤ → ⊥ then, by Implication Introduction and Transitivity,
Γ∪{⊤ → ⊥ ⇒ ⊥} ⊢ ⊤ → ⊥ and thus, again by Transitivity, Γ∪{⊤ → ⊥ ⇒ ⊥} ⊢ ⊥.
⊣

The Kripke models of ⊤ → ⊥ ⇒ ⊥ are exactly those that don’t have endnodes.
The Kripke models of (⊤ → ⊥) → ⊥ ⇒ ⊤ → ⊥ (or, by Proposition 2.11, of Ξ⊥)
are exactly those where each node is an end node or is below an endnode.

Obviously the collection of intermediate logics over a fixed language is closed
under infinite intersections. A difference between the case for IPC and the case for
BPC is, that over IPC all intermediate logics are contained in CPC; so the collection
is a complete lattice. But the collection of intermediate logics over BPC is not even
closed under finite joins, for CPC ∪ E1 is inconsistent. Theorem 5.2 implies that
the lattice of intermediate logics almost is.

A simple consequence of Proposition 3.8 and Theorem 5.2 is the following con-
servativity result.

Proposition 5.5 Let Γ be an intermediate logic, and let A ⇒ B be a geometric
sequence. Then ⊢ A ⇒ B if and only if Γ ⊢ A ⇒ B.

Proof. Let A ⇒ B be a geometric sequent such that 6⊢ A ⇒ B. By Theorem
5.2 it suffices to show that CPC 6⊢ A ⇒ B, and E1 6⊢ A ⇒ B. Let K be a Kripke
model such that K 6|= A ⇒ B. Then, by Proposition 3.8, there is a node α such
that Kr

α 6|= A ⇒ B and Ki
α 6|= A ⇒ B. But Kr

α is a model of CPC, and Ki
α is a

model of E1. ⊣

So the only geometric intermediate logic is the minimal one: BPC.
Recall that, for sets of sequents Γ, we defined Γ(1) = {A ⇒ B | Γ ⊢ A → B}.

We call a sequent theory Γ purely formal if it is axiomatizable by a set of sequents
of the form A → B.

Theorem 5.6 Let Γ1, Γ2 be sets of sequents such that Γ2 ⊆ ∆, where ∆ is a
purely formal sequent theory satisfying ∆(1) ⊆ Cl(Γ1 ∪Γ2). Then Cl(Γ1)∩Cl(Γ2) is
axiomatizable by the collection of axioms

A ⇒ B ∨ (C → D);

C ⇒ D ∨ (A → B); and

(A → B) ∨ (C → D),

where A ⇒ B ranges over Γ1 and C ⇒ D ranges over Γ2.

Proof. Let K1 and K2 be the classes of rooted Kripke models of Γ1 and Γ2

respectively, and let Λ be the collection of sequents derived from Γ1 and Γ2 as
described above. Obviously, K |= λ, for all K ∈ K1 ∪K2 and λ ∈ Λ. Conversely, let
K be a rooted Kripke model with root α such that K |= λ, for all λ ∈ Λ. It suffices
to show that K ∈ K1 ∪ K2. We may assume that K 6∈ K1. So there is a sequent
A0 ⇒ B0 ∈ Γ1 such that α 6‖− A0 ⇒ B0. Let C0 ⇒ D0 ∈ Γ2, such that β ‖− C0

for some node β. It suffices to show that β ‖− D0. There are four cases. First,
suppose α 6‖− A0 → B0 and α ≺ β. Then α ‖− C0 → D0, hence β ‖− C0 ⇒ D0.
Second, suppose α 6‖− A0 → B0 and α = β. Then α = β ‖− D0 ∨ (A0 → B0), so
β ‖− D0. Third, suppose α ‖− A0 → B0 and α ≺ β. Then α ‖− A0, α 6‖− B0, and
α ‖− B0 ∨ (C0 → D0). So α ‖− C0 → D0, and β ‖− C0 ⇒ D0. Fourth, suppose
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α ‖− A0 → B0 and α = β. Then α ‖− A0, α 6‖− B0, and α ‖− B0 ∨ (C → D) for all
C ⇒ D ∈ Γ2. So α ‖− C → D for all C ⇒ D ∈ Γ2. Suppose α = β 6‖− D0. Then,
similarly, α ‖− A → B, for all A ⇒ B ∈ Γ1. So if γ ≻ α, then γ ‖− Γ1 ∪ Γ2, thus
also γ ‖− ∆(1). Let E → F ∈ ∆. Then γ ‖− E ⇒ F , for all γ ≻ α. So α ‖− E → F .
Since ∆ is purely formal, this implies that the root α ‖− ∆ ⊇ Γ2, so K ∈ K2. ⊣

Theorem 5.6 immediately implies:

Theorem 5.7 Let Γ1 and Γ2 be axiomatizations of intermediate logics such that
Γ1 ∪ Γ2 is inconsistent. Then Cl(Γ1) ∩ Cl(Γ2) is axiomatizable by the collection of
axioms

A ⇒ B ∨ (C → D);

C ⇒ D ∨ (A → B); and

(A → B) ∨ (C → D),

where A ⇒ B ranges over Γ1 and C ⇒ D ranges over Γ2.

Proof. Either Γ1 ⊆ E1 or Γ2 ⊆ E1. ⊣

Example: The intermediate logic IPC ∩ FPC is axiomatizable by the schemas

⊤ → A ⇒ A ∨ (((⊤ → B) → B) → (⊤ → B));

(⊤ → B) → B ⇒ (⊤ → B) ∨ ((⊤ → A) → A); and

((⊤ → A) → A) ∨ (((⊤ → B) → B) → (⊤ → B)).

Proposition 5.8 The intermediate logic IPC∩FPC is axiomatizable by the schemas

⊤ → A ⇒ A ∨ (((⊤ → B) → B) → (⊤ → B)) and

((⊤ → A) → A) ∨ (((⊤ → B) → B) → (⊤ → B)).

Either schema axiomatizes a proper subsystem of IPC ∩ FPC.

Proof. The three schemas above the Proposition axiomatize IPC ∩ FPC, so it
suffices to show that the second schema follows from the third. The third schema
obviously implies

(⊤ → B) → B ⇒ (((⊤ → B) → B) → (⊤ → B)) ∨ ((⊤ → A) → A),

which is clearly equivalent to

(⊤ → B) → B ⇒ (⊤ → (⊤ → B)) ∨ ((⊤ → A) → A).

But Formalized Transitivity gives us

((⊤ → B) → B) ∧ (⊤ → (⊤ → B)) ⇒ ⊤ → B,

so the second schema follows. As to the independence of the two leftover schemas,
the first schema holds in all Kripke models with two nodes α ≺ β and only α

reflexive, and the last schema holds in all Kripke models with two nodes α ≺ β and
only β reflexive. But with properly chosen A and B, the reverse claims fail. ⊣

Another example: Let M be the theory axiomatized by the axiom Ξ = Ξ⊥ =
((⊤ → ⊥) → ⊥) → (⊤ → ⊥). BPC satisfies Ξ ⇔ ⊤ → Ξ, so M is faithful. The
class of Kripke models of M consists of exactly those for which each node either
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equals or is below an end node. By Theorem 5.7, CPC∩M is axiomatizable by the
schemas

Ξ ∨ ((⊤ → A) → A);

Ξ ∨ (⊤ → (A ∨ ¬A));

⊤ → A ⇒ A ∨ (⊤ → Ξ);

A ∨ ¬A ∨ (⊤ → Ξ);

(⊤ → Ξ) ∨ ((⊤ → A) → A); and

(⊤ → Ξ) ∨ (⊤ → (A ∨ ¬A)).

Proposition 5.9 CPC ∩M is axiomatizable by the schemas

Ξ ∨ ((⊤ → A) → A); and

Ξ ∨A ∨ ¬A.

Proof. Straightforward: Use that BPC satisfies Ξ ⇔ ⊤ → Ξ. The only less
trivial case is deriving the third schema in the axiomatization above. From Ξ∨A∨¬A
we get ⊤ → A ⇒ A ∨ (⊤ → ⊥) ∨ Ξ; but BPC satisfies ⊤ → ⊥ ⇒ Ξ. ⊣

Similarly, one can show

Proposition 5.10 IPC ∩M is axiomatizable by the schemas

Ξ ∨ ((⊤ → A) → A); and

⊤ → A ⇒ Ξ ∨A.

The sequent theory CPC∩E1 is the largest intermediate logic that is consistent
with all intermediate logics.

Proposition 5.11 The intermediate logic CPC∩E1 is axiomatizable by the schema

A ∨ ¬A.

Proof. Obviously, the schema A ∨ ¬A is contained in CPC ∩ E1. By Theorem
5.7, CPC ∩ E1 is axiomatizable by the collection of schemas

⊤ → A ⇒ A ∨ (⊤ → (⊤ → ⊥));

A ∨ ¬A ∨ (⊤ → (⊤ → ⊥));

(⊤ → ⊥) ∨ ((⊤ → A) → A);

(⊤ → ⊥) ∨ (⊤ → (A ∨ ¬A));

((⊤ → A) → A) ∨ (⊤ → (⊤ → ⊥)); and

(⊤ → (A ∨ ¬A)) ∨ (⊤ → (⊤ → ⊥)).

The second, fourth, and sixth schema trivially follow from the schema A∨¬A. The
first schema easily follows from (⊤ → A)∧¬A ⇒ ⊤ → ⊥, and the fifth schema easily
follows from the third. So it suffices to derive the third schema. By the Monotonicity
Proposition 2.6, we have ⊤ → A ⇒ (⊤ → A) → A and ¬(⊤ → A) ⇒ (⊤ → A) → A.
So BPC satisfies (⊤ → A) ∨ ¬(⊤ → A) ⇒ (⊤ → A) → A. ⊣

Here is a different proof of Proposition 5.11 based on Theorems 4.15 and 4.16,
and the minimal model construction of Section 4.
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Proposition 5.12 CPC ∩ E1 is strongly complete with respect to the class of sin-
gleton models, and axiomatizable by the schema A ∨ ¬A.

Proof. Clearly, by Theorems 4.15 and 4.16, CPC ∩E1 is weakly complete with
respect to the class of singleton models. So it suffices to show that the theory
C axiomatized by the schema A ∨ ¬A is strongly complete with respect to this
class of one-node Kripke models. Obviously, all one-node models are models of C.
Conversely, let K be a rooted model of C with root α0 such that K 6|= γ for some
sequent γ. Let KL be the minimal model of K, and suppose that [α0] ≺L [β]. If
[α] 6= [β] then, by Lemma 4.8, there exists a formula A such that [β] ‖− LA and
[α] 6‖− LA. So [α] 6‖− A ∨ ¬A, contradicting Proposition 4.5. Thus [α0] = [β], and
KL is a one-node model. Apply Lemma 4.9. ⊣

Note that CPC ∩ E1 is not faithful, for it satisfies the schema (⊤ → A) → A,
but not the sequent ⊤ → ⊥ ⇒ ⊥.

A sequent A ⇒ B is derivable from CPC ∩ E1, exactly when it is a classical
tautology and, moreover, when after replacing all implication subformulas by ⊤,
the resulting sequent A′ ⇒ B′ is also a tautology. Although CPC ∩ E1 is a proper
subsystem of CPC, they are identical in the following remarkable way:

Proposition 5.13 Let Γ be an intermediate logic. Then for all formulas A we have
Γ ∩ E1 ⊢ A if and only if Γ ⊢ A.

Proof. By Theorem 5.2 we may assume that Γ ⊆ CPC. Suppose Γ∩E1 6⊢ A, for
some formula A. Then there is a Kripke model K such that K 6|= A. If K is a model
of Γ, then Γ 6⊢ A. Otherwise, we may assume that K is a model of E1, hence even
a singleton irreflexive model. Replace all implication subformulas in A by ⊤. The
resulting formula A′ is geometric and, relative to A, such that certain subformulas
of A in positive places are replaced by ⊤. So BPC ⊢ A ⇒ A′ and K |= A ⇔ A′.
Then BPC 6⊢ A′ so, by Proposition 3.8, CPC 6⊢ A′, and thus CPC 6⊢ A. ⊣

So, in particular, the difference between CPC ∩ E1 and CPC is solely in the
sequents A ⇒ B with nontrivial A. Note that the proof of Proposition 5.13 only
uses that Γ ⊆ CPC or Γ ⊆ E1. Proposition 5.13 also applies to IPC ∩ E1. With
Theorem 5.7 one easily verifies that IPC ∩ E1 is axiomatizable by the schemas

⊤ → A ⇒ A ∨ (⊤ → (⊤ → ⊥)) and

(⊤ → A) → A.

Proposition 5.14 There are no intermediate logics properly between CPC ∩ E1

and E1, that is, CPC ∩ E1 is a maximal intermediate logic inside E1.

Proof. Let Γ be an intermediate logic such that CPC ∩ E1 ⊆ Γ ⊆ E1. If
Γ ∪ {⊤ → ⊥ ⇒ ⊥} is consistent then, by Lemma 5.1, Γ ⊆ CPC. So we may
assume that Γ ∪ {⊤ → ⊥ ⇒ ⊥} ⊢ ⊥. So, by the Formalization Proposition 2.3,
Γ ⊢ (⊤ → ⊥) → ⊥ ⇒ ⊤ → ⊥. But CPC ∩ E1 ⊆ Γ implies that also Γ ⊢ (⊤ →
⊥) ∨ ((⊤ → ⊥) → ⊥). So Γ ⊢ ⊤ → ⊥, and thus Γ = E1. ⊣

Proposition 5.15 There are no intermediate logics properly between CPC ∩ E1

and CPC, that is, CPC ∩ E1 is a maximal intermediate logic inside CPC.
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Proof. Let Γ be an intermediate logic such that CPC ∩ E1 ⊆ Γ ⊆ CPC. If
Γ 6⊢ {⊤ → ⊥ ⇒ ⊥} then, by Proposition 2.2, Γ ∪ {⊤ → ⊥} is consistent, and
Γ ⊆ E1. So we may assume that Γ ⊢ ⊤ → ⊥ ⇒ ⊥. Let A be a formula. Then
CPC∩E1 ⊆ Γ implies that Γ∪{⊤ → A} ⊢ ((⊤ → A)∧A)∨ ((⊤ → A)∧ (A → ⊥)).
But (⊤ → A) ∧ (A → ⊥) ⊢ ⊤ → ⊥, so Γ ∪ {⊤ → A} ⊢ A. So IPC ⊆ Γ, and thus
Γ = CPC. ⊣

Over IPC the lattice of atomless formulas, modulo provability in IPC, simply
looks like

⊥

⊤
✻

The lattice of atomless formulas Λ(⊥) over BPC, discussed below, is much more
complicated. To show this we need the following results.

Lemma 5.16 Let A be a formula such that BPC 6⊢ A. Then there is a finite rooted
Kripke model K with reflexive root α such that α 6‖− A, and β ‖− A for all β 6= α.

Proof. With Theorem 4.6 there is a finite rooted Kripke model K such that its
root α 6‖− A and β ‖− A for all β 6= α. If α is reflexive, then we are done. Suppose
α is irreflexive. Form the Kripke model K′ from K by only replacing the irreflexive
root α by a reflexive root α′. Again, β ‖− A for all β 6= α. For all formulas of the
form B → C, if α′ ‖− B → C, then α ‖− B → C; and for all implication-free B,
α′ ‖− B if and only if α ‖− B. Now A can be written as an implication-free formula
with some of its atoms replaced by implication subformulas. So if α′ ‖− A, then
α ‖− A. Thus α′ 6‖− A. ⊣

Theorem 5.17 Let A[p] be a formula built from the binary connectives and the
atom p only, and let B be a formula such that ⊤ → B ⇒ B is not derivable in
BPC. Then A[p] is derivable in BPC, if and only if A[B] is.

Proof. Obviously, if A[p] is derivable, then so is A[B]. Conversely, suppose that
A[p] is not provable in BPC. Then there is a Kripke model K such that K 6|= A[p].
By Lemma 5.16 there is a (finite) rooted Kripke model K1 with reflexive root α1

such that α1 6‖− B and β ‖− B for all β ≻1 α1. With Theorem 4.6 there is also a
(finite) rooted Kripke model K2 with root α2 such that α2 6‖− ⊤ → B ⇒ B, and
β ‖− ⊤ → B ⇒ B for all β 6= α2. So α2 must be irreflexive and α2 6‖− B, while
β ‖− B for all β ≻2 α2. Now we construct a new Kripke model K′ as follows: All
nodes α ∈ W of K satisfying α ‖− p are in W ′. Additionally, if α 6‖− p, then all
pairs (α, α′) are in W ′, where α is reflexive and α′ ∈ W1, or α is irreflexive and
α′ ∈ W2. We set (α, α′) ≺′ (β, β′) when α ≺ β and α′ is the root of its model Ki,
or α = β and α′ ≺i β

′ in their model Ki; we set (α, α′) ≺′ β if α ≺ β and α′ is
the root of its model Ki; and we set α ≺′ β when α ≺ β in K. We set α ‖− ′q for
all atoms q, and (α, α′) ‖− ′q exactly when α′ ‖− iq. Informally, we have replaced
each node α of W such that α 6‖− p by a copy of K1 or K2 depending on whether
α is reflexive or irreflexive. The order on the underlying W doesn’t change, and
the nodes in the multiple models Ki that are not roots are only compatible with
other nodes as they were in the original Ki. Claim: For all formulas C[p] built
from p with the binary connectives, and all nodes α ∈ W , we have α ‖− ′C[B] if
and only if α ‖− C[p], or (α, αi) ‖−

′C[B] if and only if α ‖− C[p], depending on
whether α ∈ W ′ or (α, αi) ∈ W ′ with αi root of Ki. Note that if α ‖− p, then
α ‖− C[p] for all C[p]. Similarly, if α ‖− ′q for all atoms q, then α ‖− ′C[B] for all
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C[p]. The proof of the claim is by a simple induction on the complexity of C[p]. We
only show the induction step for the case where C[p] is an implication D[p] → E[p].
If α 6‖− D[p] → E[p], then there is β ≻ α such that β ‖− D[p] and β 6‖− E[p].
So β 6‖− p. By induction, (β, βj) ‖− ′D[B] and (β, βj) 6‖−

′
E[B], while (β, βj .) ≻′

(α, αi). So (α, αi) 6‖−
′
D[B] → E[B]. Conversely, suppose (α, αi) 6‖−

′
D[B] → E[B].

Now if β′ is not a root, then (β, β′) ‖− ′C[B] for all C[p]; similarly, β ‖− ′C[B] for
all β ∈ W ′∩W and C[p]. So there can only be a node (β, βi) ≻′ (α, αi) with βi root
of Ki, such that (β, βi) ‖−

′D[B] and (β, βi) 6‖−
′
E[B]. Apply induction: β ≻ α is

such that β ‖− D[p] and β 6‖− E[p]. So α 6‖− D[p] → E[p]. ⊣

In Theorem 5.17 we may add ⊤ as possible building block of A[p] since, up to
provable equivalence, it already occurs as p → p. If ⊤ → B ⇒ B holds, then the
collection of formulas A[B], up to provable equivalence, is very limited:

Proposition 5.18 Let A[p] be a formula built from the binary connectives, ⊤, and
the atom p only, and let B be a formula such that ⊤ → B ⇒ B is derivable in BPC.
Then A[B] is derivable in BPC, or A[B] ⇔ B is derivable in BPC.

Proof. By a simple induction on the complexity of A[p]. The only nontrivial
case is ⊤ → p, and in that case ⊤ → B ⇔ B is derivable in BPC. ⊣

The dual result of Lemma 5.16 with irreflexive roots instead of reflexive roots
doesn’t work as Proposition 5.19 below shows.

Proposition 5.19 Let α be a node of a Kripke model K, and let A be a formula,
such that ⊤ → A ⇒ A is derivable in BPC. If α 6‖− A, then there is a node β ≻ α

such that β 6‖− A.

Proof. If all β ≻ α are such that β ‖− A, then α ‖− ⊤A. And thus α ‖− A. ⊣

By Proposition 2.11, Proposition 5.19 applies exactly to all formulas A that are,
up to provable equivalence, of the form ((⊤ → B) → B) → (⊤ → B).

A lattice of formulas up to provable equivalence is a basic algebra. basic algebras,
defined below, are for BPC what Heyting algebras are for IPC and Boolean algebras
are for CPC. A basic algebra A is a structure with constants 0 and 1, and binary
functions ∧, ∨, and →, such that

• with respect to 0, 1, ∧, and ∨ we have a distributive lattice with top and
bottom; and

• for → we have the additional equations

a → b ∧ c = (a → b) ∧ (a → c);

b ∨ c → a = (b → a) ∧ (c → a);

a → a = 1;

a ≤ 1 → a; and

(a → b) ∧ (b → c) ≤ a → c.

The relation ≤ is expressible in terms of equations with ∧ in the standard way. So
basic algebras form a universal algebra class with morphisms defined as usual.

Let A be a formula, and let Λ(A) be the lattice of formulas, up to provable equiv-
alence, generated from A using the binary connectives. So the lattice of atomless
formulas is the same as Λ(⊥). The lattices Λ(A) are basic algebras with minimum
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A = 0. Suppose that ⊤ → A ⇒ A is not derivable. Then, by Theorem 5.17, the
lattice Λ(A) is isomorphic to the basic algebra Λ(p). Since ⊤ → ⊥ ⇒ ⊥ is not
derivable, this includes the free basic algebra (on zero generators) Λ(⊥). If, how-
ever, ⊤ → A ⇒ A is derivable, but A itself is not, then Λ(A) is the two-element
lattice {A,⊤}. Finally, if A is derivable as well, then Λ(A) is the one-node basic
algebra.

Let A ∈ Λ(⊥). Then the assignment ⊥ 7→ A extends uniquely to a basic algebra
endofunction on Λ(⊥) that commutes with the binary operators and preserves 1. If
A is such that ⊤A ⇒ A is not derivable in BPC, then this map is an embedding.
There are many such A, so Λ(⊥) has lots of self-embeddings, hence is structurally
very rich.

To get some idea of the structure of Λ(⊥), we derive:

Proposition 5.20 BPC satisfies the following schemas, for all m,n ≥ 0:

(i) A ⇒ ⊤mA;

(ii) ⊤m+1A → A ⇔ ⊤A → A;

(iii) ⊤A → A ⇒ ⊤mA → ⊤nA;

(iv) ⊤A ⇒ ⊤A → A;

(v) ⊤m+1A ∧ (⊤A → A) ⇔ ⊤A;

(vi) ⊤m+2A → (⊤A → A) ⇔ ⊤2A → ⊤A;

(vii) (⊤m+1A → ⊤mA) → A ⇔ ⊤A;

(viii) (⊤A → A) → ⊤m+1A ⇔ (⊤A → A) → ⊤A; and

(ix) (⊤m+1A → ⊤mA) → ⊤m+1A ⇒ (⊤A → A) → ⊤A.

Proof. (i) follows from the schema A ⇒ ⊤ → A.
As to (ii): The implication ⇒ follows from the Monotonicity Proposition 2.6;

the reverse implication ⇐ follows from ⊤A → A being equivalent to ⊤A ↔ A, and
repeated application of the Formal Substitution Proposition 2.5.

(iii) immediately follows from (ii).
(iv) follows from ⊤A ⇔ ⊤ → A and the Monotonicity Proposition.
As to (v): The ⇐ direction immediately follows from (i) and (iv). The converse

direction follows by induction on m: ⊤m+1A ∧ (⊤A → A) ⇔ (⊤ → ⊤mA) ∧ (⊤ →
(⊤A → A)) ∧ (⊤A → A) ⇔ (⊤ → (⊤mA ∧ (⊤A → A)) ∧ (⊤A → A) ⇔ (⊤ →
⊤A) ∧ (⊤A → A) ⇔ ⊤A.

As to (vi): Suppose ⊤m+2A → (⊤A → A). Then, with (ii), we get ⊤m+2A →
((⊤ → ⊤m+1A) ∧ (⊤m+1A → A)), hence ⊤m+2A → ⊤A, and thus ⊤2A → ⊤A.
Conversely, ⊤2A → ⊤A is the same as ⊤m+2A → ⊤A, which is the same as
⊤m+2A → (⊤ → A): Apply the Monotonicity Proposition.

As to (vii): The direction ⇐ immediately follows from the Monotonicity Propo-
sition. Conversely, with (iv), we get (⊤m+1A → ⊤mA) → A ⇒ ⊤m+1A → A ⇒
⊤m+1A → ⊤mA; and thus (⊤m+1A → ⊤mA) → A ⇒ ⊤ → A.

As to (viii): The direction ⇐ immediately follows from the Monotonicity Propo-
sition. Conversely, with (ii), we get (⊤A → A) → ⊤m+1A ⇔ (⊤A → A) → ((⊤ →
⊤mA) ∧ (⊤mA → A)) ⇒ (⊤A → A) → ⊤A.

As to (ix): By (iii) and the Monotonicity Proposition we have (⊤m+1A →
⊤mA) → ⊤m+1A ⇒ (⊤A → A) → ⊤m+1A. Apply(viii). ⊣
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