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Abstract

We characterize the first-order formulas with one free variable that are preserved under

bisimulation and persistence or strong persistence over the class of Kripke models with transitive

frames and unary persistent predicates.

1 Introduction

The characterization of syntactically definable sets of first-order formulas by model theoretic notions
is well-established. The current line of work follows an approach started by Johan van Benthem in
[8]. The case mentioned in the Abstract is well-known for the class of Kripke models over preordered
frames, that is, frames where the world relation is both transitive and reflexive [10, pp. 318–320]:
Let Krip be the classical first-order theory of preordered sets and persistent unary relations over
a language with equality, a binary predicate ≤ for order, and countably infinitely many unary
predicates for persistence. So Krip is axiomatizable by the reflexivity and transitivity axioms for ≤,
and the axioms Px∧ x ≤ y → Py for all unary predicates P . For each (intuitionistic) propositional
formula B there is a natural formula I(B, x) over the language of Krip such that K |= I(B, k) if
and only if k ‖−

K
B, for all Kripke models K of Krip and k ∈ K, the domain of K. Then a formula

A(x) over the language of Krip is persistent and preserved under bisimulations, if and only if there
exists a propositional formula B such that Krip ⊢ A(x) ↔ I(B, x).

Let ≺ be the binary predicate for order in the language of transitive frames, and Krit be the
theory of transitive frames and countably infinitely many persistent unary relations. Significantly,
there are at least two natural ways to extend persistence to the larger class of models of Krit.

The first way defines A(x) to be persistent if Krit ⊢ A(x) ∧ x ≺ y → A(y). At first one may
expect that A(x) over the language of Krit is persistent and preserved under bisimulations exactly
when there exists a propositional formula B such that Krit ⊢ A(x) ↔ I(B, x), where in this case
B is thought of as a formula over Basic Propositional Calculus BPC. But it is shown in [7] that
this is very untrue. The authors of [7] extend the language of BPC essentially to a modal logic
over Intuitionistic Propositional Calculus IPC, in which the implication of BPC is definable. This
intuitionistic modal theory U exactly entails BPC, modulo a translation, over a natural sublanguage.
All formulas B over U are such that the corresponding formulas I ′′(B, x) over the language of Krit

are persistent and preserved under bisimulations, and from it we can find the necessary B such that
Krit ⊢ A(x) ↔ I ′′(B, x).

The second way defines A(x) strongly persistent if Krit ⊢ A(x) ↔ ∀y(x ≺ y → A(y)). For
each propositional formula B of the language of BPC, let Ξ(B) be the formula ((⊤ → B) → B) →
(⊤ → B). Then a formula A(x) over the language of Krit is strongly persistent and preserved
under bisimulations, if and only if there exists a propositional formula B such that Krit ⊢ A(x) ↔
I(Ξ(B), x).

Both characterizations can be extended to all theories Γ ⊇ Krit.
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2 Basic Logic

Basic Propositional Calculus BPC was first introduced by Albert Visser in [9]. His paper also gives
a completeness theorem for the class of transitive Kripke models. See also [1]. We don’t need to
know Basic Logic, or even see an axiomatization of BPC, to understand any of the later sections
below. This brief section is intended as motivation for the study of BPC.

BPC was introduced as a proper subsystem of Intuitionistic Propositional Calculus IPC satisfying
the informal equations

CPC
S5 = IPC

S4 = BPC
K4 ,

where CPC is Classical Propositional Calculus; S5, S4, and K4 are the familiar modal logics. The
weakness of the system BPC allows for an extension FPC which extends the list of informal equations
above with the quotient

FPC
GL ,

where GL is the well-known provability modal logic. Visser showed that FPC satisfies the Explicit
Fixed Point Theorem: For each propositional formula A[p], FPC ⊢ A[⊤] ↔ A[A[⊤]].

An alternate motivation for the study of Basic Logic, first expressed by this author in [5], is based
on a search for a different ‘constructive’ interpretation of the connectives. A satisfactory description
is beyond the scope of this paper. Interested readers are invited to look in [5] or [6] for further
reading.

3 Strong Persistence

When setting up the case for strong persistence, we make extensive use of [10]: For the purposes of
this paper we may assume that the language L of BPC is built with countably many propositional
variables. As language LKrit for the theory of transitive Kripke models we have = for equality, ≺
for the order, and countably many unary predicate symbols. The theory Krit extends the classical
first-order logic with equality with the nonlogical axioms of

• (x ≺ y) ∧ (y ≺ z) → (x ≺ z) (transitivity); and

• Px ∧ x ≺ y → Py for all unary predicate symbols P (persistence).

We will write x � y as short for x = y ∨ x ≺ y whenever it is convenient. The expressions ≻ and �
are the duals of ≺ and �.

Define an embedding I of L into LKrit inductively by

• I(p, x) equals Px (we assume some bijection p 7→ P );

• I(⊥, x) equals ⊥;

• I(⊤, x) equals ⊤;

• I(A ∧B, x) equals I(A, x) ∧ I(B, x);

• I(A ∨B, x) equals I(A, x) ∨ I(B, x); and

• I(A → B, x) equals ∀y(x ≺ y ∧ I(A, y) → I(B, y)) modulo a possible renaming of bound
variables.

Transitive Kripke models and models of Krit are essentially the same. Clearly we have k ‖−
K

A if
and only if K |= I(A, k), for all propositional formulas A, all models K, and elements k ∈ K, the
domain of K. By the completeness theorem for BPC we have ⊢BPC A if and only if K |= I(A, k) for
all models K of Krit and k ∈ K (see [1] or [9]).

Bisimulations were introduced by Johan van Benthem in his dissertation [8]. In this thesis
bisimulations were already employed to connect model theoretic properties with syntactic structure.
A bisimulation between two transitive models K and M consists of a relation R ⊆ K×M satisfying:
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• kRm implies k ‖−
K

p if and only if m ‖−
M

p, for all atoms p;

• k′ ≻ kRm implies k′Rm′ for some m′ ≻ m; and

• kRm ≺ m′ implies k′Rm′ for some k′ ≻ k.

Let A(x) be a formula of LKrit with x as only possible free variable. We say that A(x) is preserved
under bisimulations over a theory Γ ⊇ Krit if whenever R is a bisimulation between models K and
M of Γ such that kRm and K |= A(k), then M |= A(m).

Proposition 3.1 I(B, x) is preserved under bisimulations over Krit, for all propositional formulas

B.

Proof. By induction on the complexity of B. The case for atoms, ⊤, and ⊥ are immediate from
the definitions, and the induction steps for ∧ and ∨ are easy. Let K |= I(C → D, k), and R be
a bisimulation between K and M such that kRm. Suppose m ≺ m′ ‖−

M
C. Then there exists k′

satisfying k ≺ k′Rm′. By induction k′ ‖−
K

C, and thus by definition of I(C → D, k), k′ ‖−
K

D. So
by induction m′ ‖−

M
D. And thus M |= I(C → D,m). ⊣

We call A(x) persistent over a theory Γ ⊇ Krit if Γ ⊢ A(x) ∧ x ≺ y → A(y). From [9] (and [1])
we have:

Proposition 3.2 I(B, x) is persistent over Krit, for all propositional formulas B.

Proof. By induction on the complexity of B: Use the inductive definition of I(B, x). ⊣

Persistence will be discussed in Section 4. We call A(x) strongly persistent over a theory Γ ⊇ Krit

if Γ ⊢ A(x) ↔ ∀y(x ≺ y → A(y)). Obviously a formula I(B, x) is strongly persistent over Γ exactly
when Γ ⊢ I(B, x) ↔ I(⊤ → B, x). For each propositional formula B, define Ξ(B) to be the formula

((⊤ → B) → B) → (⊤ → B).

Proposition 3.3 Let K be a model of Krit, and B be a propositional formula. Then K |= I(B, x) ↔
I(⊤ → B, x), if and only if K |= I(B, x) ↔ I(Ξ(B), x). Moreover, K |= I(Ξ(B), x) ↔ I(⊤ →
Ξ(B), x).

Proof. Obviously, Krit ⊢ I(E, x) → I(D → E, x), for all propositional formulas D and E. So

K |= I(B, x) → I(⊤ → B, x)

and
K |= I(⊤ → B, x) → I(Ξ(B), x).

Suppose K |= I(⊤ → B, x) → I(B, x). Then

K |= I(Ξ(B), x) ↔ I((B → B) → B, x)

↔ I(⊤ → B, x)

↔ I(B, x).

The right-to-left half of the first claim is immediate from the second claim. So it suffices to prove
the second claim. Suppose K |= I(⊤ → Ξ(B), k) and k ≺ k′ ‖−

K
(⊤ → B) → B. To show:

k′ ‖−
K

(⊤ → B). We have k′ ‖−
K

Ξ(B), so also k′ ‖−
K

⊤ → (⊤ → B). Combining again with
k′ ‖−

K
(⊤ → B) → B gives us k′ ‖−

K
⊤ → B. So K |= I(Ξ(B), k). ⊣

In [1] we have a short BPC proof of Proposition 3.3.
Our main result is:
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Theorem 3.4 Let A(x) be a one-variable formula of LKrit which is strongly persistent and preserved

under bisimulations over a theory Γ ⊇ Krit. Then there is a propositional formula B such that

Γ ⊢ A(x) ↔ I(Ξ(B), x).

Proof. By Proposition 3.3 it suffices to find a propositional formula B such that

Γ ⊢ A(x) ↔ I(B, x).

The remainder of the proof closely parallels the argument in [10, pp. 318–320]. Let ∆(x) be the
set {I(B, x) | Γ ⊢ A(x) → I(B, x)}. If Γ ∪ ∆(x) ⊢ A(x), we are done by compactness. Suppose
Γ ∪∆(x) 6⊢ A(x). There is a maximal set ∆′(x) ⊇ ∆(x) of formulas of the form I(B, x) such that
Γ ∪ ∆′(x) 6⊢ A(x). By [3, Section 5.1] there exists an ω-saturated model K of Γ with an element
k ∈ K such that K |= ∆′(k) and K |= ¬A(k). Let Θ(x) be the set

Γ ∪ {A(x)} ∪∆′(x) ∪ {¬I(C, x) | I(C, x) /∈ ∆′(x)}.

Suppose Θ(x) were not consistent. Then there are finite sets X and Y of propositional formulas
satisfying k ‖−

K
B for all B ∈ X and k 6‖−

K
C for all C ∈ Y , such that

Γ ⊢ A(x) → (
∧

B∈X

I(B, x) →
∨

C∈Y

I(C, x)).

So also
Γ ⊢ ∀y[x ≺ y → A(y)] → ∀y[x ≺ y → (I(

∧
X, y) → I(

∨
Y, y))].

By strong persistence of A(x), and the definition of I,

Γ ⊢ A(x) → I(
∧

X →
∨

Y, x).

So I(
∧
X →

∨
Y, x) ∈ ∆(x) ⊆ ∆′(x). Strong persistence of A(x) implies that there exists k′ ≻ k

such that K |= ¬A(k′). But K |= I(
∨
Y, k′), contradicting the maximality of ∆′(x). So Θ(x) is

consistent, and therefore has an ω-saturated model M with M |= Θ(m) for some m. Let R ⊆ K×M
be defined by

k′Rm′ if and only if k′ ‖−
K

B exactly when m′ ‖−
M

B, for all propositional formulas B.

We claim that R is a bisimulation. Assume k′Rm′ ≺ m′′. Let Λ(x) be the set

{k′ ≺ x} ∪ {I(B, x) | m′′ ‖−
M

B} ∪ {¬I(C, x) | m′′ 6‖−
M

C}.

Suppose Λ(x) were not satisfiable in K. Then, by ω-saturatedness of K, there are finite sets X and
Y of propositional formulas satisfying m′′ ‖−

M
B for all B ∈ X and m′′ 6‖−

M
C for all C ∈ Y , and

such that k′ ‖−
K

∧
X →

∨
Y . By the definition of R, also m′ ‖−

M

∧
X →

∨
Y , contradiction. So

K |= Λ(k′′) for some k′′ ≻ k′; so also k′′Rm′′. The case for k′′ ≻ k′Rm′ is proven similarly. So R
is a bisimulation between K and M, with kRm. But K |= ¬A(k) and M |= A(m); contradiction.
Thus Γ ∪∆(x) ⊢ A(x). ⊣

Theorem 3.4 immediately generalizes [10, pp. 318–320].

4 Persistence

Obviously, A(x) is persistent over Γ exactly when Γ ⊢ A(x) ↔ ∀y(x � y → A(y)). From the parallel
result of Theorem 3.4 for Intuitionistic Propositional Calculus IPC and Krip, one should expect that
equivalences of the form

Krit ⊢ A(x) ↔ I(B, x)

for persistent A(x) that are preserved under bisimulations require that formulas B allow for intuition-
istic implications besides the BPC implication. This turns out to be the case. First let us establish
the insufficiency of propositional formulas over BPC. There is the obvious embedding A 7→ A′ of the
language L of BPC into the language ML of K4, inductively defined by:
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• p′ = p ∧✷p;

• ⊥′ = ⊥;

• ⊤′ = ⊤;

• (A ∧B)′ = A′ ∧B′;

• (A ∨B)′ = A′ ∨B′; and

• (A → B)′ = ✷(A′ → B′).

Define the embedding I ′ of ML into LKrit inductively by

• I ′(p, x) equals Px (we assume some bijection p 7→ P );

• I ′(⊥, x) equals ⊥;

• I ′(⊤, x) equals ⊤;

• I ′(A ∧B, x) equals I ′(A, x) ∧ I ′(B, x);

• I ′(A ∨B, x) equals I ′(A, x) ∨ I ′(B, x);

• I ′(A → B, x) equals I ′(A, x) → I ′(B, x); and

• I ′(✷A, x) equals ∀y(x ≺ y → I ′(A, y)) modulo a possible renaming of bound variables.

Let Tran be the theory over first-order logic with equality which is axiomatized by

• (x ≺ y) ∧ (y ≺ z) → (x ≺ z) (transitivity).

So Tran is a proper subtheory of Krit. By the completeness theorem for K4 we have ⊢K4 A if and
only if Tran ⊢ I ′(A, x).

Proposition 4.1 Krit ⊢ I(B, x) ↔ I ′(B′, x) for all propositional formulas B of L.

Proof. By an obvious induction on the complexity of propositional formulas. ⊣

The following counterexample essentially comes from [7]. Recall that ¬A is short for A → ⊥.

Proposition 4.2 Let A be the formula (¬p) ∧ ✷(¬p) ∈ ML. Then I ′(A, x) is persistent and pre-

served under bisimulations, but there exists no B ∈ L such that

Krit ⊢ I ′(A, x) ↔ I(B, x).

Proof. The preservation of A under bisimulations is well-known; see [8]. Moreover, the formula
A essentially is intuitionistic negation when we replace ≺ by � in the transitive Kripke models. So
A is persistent. Let K be a Kripke model with two irreflexive nodes k and k′ as in the diagram
below (open circles indicate irreflexive nodes, filled-in circles indicate reflexive nodes) with empty
relation ≺, and with propositional variable p only forced in the right node.

k ❞ k′ ❞ p

So k ‖−
K

A and k′ 6‖−
K

A. As to the (non)existence of B, we may restrict ourselves to B ∈ L that are
built from p using the connectives including ⊥ and ⊤. But K |= I(C → D,x) for all implications of
L, so I(B, x) can only be valid on one of the sets ∅, {k′}, or K = {k, k′}. So K 6|= I ′(A, x) ↔ I(B, x).
⊣

So Theorem 3.4 fails when we replace strong persistence by persistence and Ξ(B) by arbitrary
B. Our solution, extending the language (and theory) of BPC, essentially follows from [7]. Define
the embedding I ′′ of ML into LKrit inductively by
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• I ′′(p, x) equals Px (we assume some bijection p 7→ P );

• I ′′(⊥, x) equals ⊥;

• I ′′(⊤, x) equals ⊤;

• I ′′(A ∧B, x) equals I ′′(A, x) ∧ I ′′(B, x);

• I ′′(A ∨B, x) equals I ′′(A, x) ∨ I ′′(B, x);

• I ′′(A → B, x) equals ∀y(x � y ∧ I ′′(A, y) → I ′′(B, y)); and

• I ′′(✷A, x) equals ∀y(x ≺ y → I ′′(A, y)) modulo a possible renaming of bound variables.

Notice the use of � in the inductive step for →. An easy proof by induction on the complexity of
propositional formulas yields:

Proposition 4.3 Krit ⊢ I(B, x) ↔ I ′′(B′, x) for all propositional formulas B of L.

So modulo the embedding B 7→ B′, the language ML is a proper extension of the language L.
There is also a modal propositional theory that matches this extension: Following [7], let U be the
theory with modus ponens as rule of inference, and with axioms

• an appropriate IPC axiomatization for ⊥, ⊤, ∧, ∨, and →;

• ✷(A → B) → (✷A → ✷B);

• ✷A → ✷✷A;

• A → ✷A; and

• ✷A → (B ∨ (B → A)).

An easy induction proof on the length of derivations shows that if ⊢U A, then Krit ⊢ I ′′(A, x);
soundness. In [7] the authors prove the strong reverse direction; strong completeness.

Proposition 4.4 I ′′(B, x) is preserved under bisimulations, for all modal propositional formulas B.

Proof. By induction on the complexity of B. A bisimulation for ≺ is also a bisimulation for �,
so the cases for atoms and the connectives minus ✷ are as for IPC. The case for ✷A is as for ⊤ → A
in the proof of Proposition 3.1. ⊣

Proposition 4.5 I ′′(B, x) is persistent, for all modal propositional formulas B.

Proof. By an easy induction on the complexity of B. ⊣

Theorem 4.6 Let A(x) be a one-variable formula of LKrit which is persistent and preserved under

bisimulations over a theory Γ ⊇ Krit. Then there is a modal propositional formula B such that

Γ ⊢ A(x) ↔ I ′′(B, x).

Proof. The proof closely parallels the arguments in the proofs of Theorem 3.4 and [10, pp.
318–320]. Let ∆(x) be the set {I ′′(B, x) | Γ ⊢ A(x) → I ′′(B, x)}. If Γ ∪∆(x) ⊢ A(x), we are done.
Suppose Γ ∪∆(x) 6⊢ A(x). There exists an ω-saturated model K of Γ with an element k ∈ K such
that K |= ∆(k) and K |= ¬A(k). Let Θ(x) be the set

Γ ∪ {A(x)} ∪ {I ′′(B, x) | K |= I ′′(B, k)} ∪ {¬I ′′(C, x) | K 6|= I ′′(C, k)}.
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Suppose Θ(x) were not consistent. Then there are finite sets X and Y of modal propositional
formulas satisfying K |= I ′′(B, k) for all B ∈ X and K 6|= I ′′(C, k) for all C ∈ Y , such that

Γ ⊢ A(x) → (
∧

B∈X

I ′′(B, x) →
∨

C∈Y

I ′′(C, x)).

So also
Γ ⊢ ∀y[x � y → A(y)] → ∀y[x � y → (I ′′(

∧
X, y) → I ′′(

∨
Y, y))].

By persistence of A(x), and the definition of I ′′,

Γ ⊢ A(x) → I ′′(
∧

X →
∨

Y, x).

So I ′′(
∧

X →
∨
Y, x) ∈ ∆(x), while K 6|= I ′′(

∧
X →

∨
Y, k), contradiction. So Θ(x) is consistent,

and therefore has an ω-saturated model M with M |= Θ(m) for some m. Let R ⊆ K×M be defined
by

k′Rm′ if and only if
K |= I ′′(B, k′) exactly when M |= I ′′(B,m′), for all modal propositional formulas B.

We claim that R is a bisimulation. Assume k′Rm′ ≺ m′′. Let Λ(x) be the set

{k′ ≺ x} ∪ {I ′′(B, x) | M |= I ′′(B,m′′)} ∪ {¬I ′′(C, x) | M 6|= I ′′(C,m′′)}.

Suppose Λ(x) were not satisfiable in K. Then, by ω-saturatedness of K, there are finite sets X and
Y of modal propositional formulas satisfying M |= I ′′(B,m′′) for all B ∈ X and M 6|= I ′′(C,m′′)
for all C ∈ Y , and such that K |= I ′′(✷(

∧
X →

∨
Y ), k′). By the definition of R, also M |=

I ′′(✷(
∧

X →
∨
Y ),m′), contradiction. So K |= Λ(k′′) for some k′′ ≻ k′; so also k′′Rm′′. The case

for k′′ ≻ k′Rm′ is proven similarly. So R is a bisimulation between K and M, with kRm. But
K |= ¬A(k) and M |= A(m); contradiction. Thus Γ ∪∆(x) ⊢ A(x). ⊣
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