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Abstract. We present difference relations as a natural generaliza-
tion of inequality in constructive mathematics. Differences on a set

S are defined as binary relations on all powers Sn simultaneously,
satisfying axiom schemas generalizing the ones for inequality. The

denial inequality and the apartness relation are special cases of a dif-
ference relation. Several theorems in constructive algebra are given
that unify and generalize well-known results in constructive algebra

previously employing special cases of difference relations. Finally,
we discuss extended differences for a set S as collections of relations
defined on all powers SX simultaneously.

§0. Introduction

In mathematics the natural generalization of equality is equiva-
lence. A theory with equivalence involves the reflexive, symmetric
and transitive equivalence, and functions and relations respecting this
equivalence. In constructive mathematics the same theory with equiv-
alence relations works without difficulty. For inequality the situation
is more complicated. There are different versions of constructive in-
equality that only in classical mathematics are equal to the one stan-
dard inequality. Examples are: denial inequality, where x 6= y if and
only it is not true that x = y, that is, ¬x = y; and tight apartness,
whose axiomatization we will present later on. The natural inequal-
ity on the set of real numbers R, defined by r 6= s if and only if
|r − s| > 1/n for some natural number n, is a tight apartness. Tight
apartness and denial inequality are independent; a tight apartness
need not be a denial inequality, a denial inequality need not be a
tight apartness. We know of no definition of a binary relation on a
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set S, generalizing both denial inequality and apartness, that allows
for a substantial constructive theory of inequality.

There are several theorems in algebra and elsewhere that hold if we
use denial inequality as the intended inequality, and that also hold if
we use a tight apartness as the intended inequality. Sometimes there
may even be a third version of inequality that makes the theorem
work. For each of these cases we need a new proof to establish our
result. For a uniform treatment of such theorems we present a general-
ization of the inequalities mentioned above, called a difference. Rather
than defining a binary relation on a set S, a difference is a collection
of binary relations defined on all powers Sn simultaneously. Then
for some theorems we only need a difference to establish the conclu-
sion. In §2 we present examples of theorems that have generalizations
employing differences instead of denial inequality or apartness.

To illustrate why inequality is more troublesome than equality
when we generalize to a constructive context, we consider the problem
in the context of some first-order language with equality =. Besides
the logical axiom schemas and rules concerning the logical operators
and constants we have for equality the axiom schemas

⊤ ⊢ x = x

x = y ⊢ Ax → Ay,

where in the last schema the variables x, y are not bound by a quan-
tifier of A. If = is an equivalence relation, then A is any formula built
up from functions and relations that preserve the equivalence. It is
well-known that we may restrict Ax to atomic formulas and equa-
tions f = g. The general case follows from this subcollection. The
schemas above work in constructive mathematics as well as in classical
mathematics.

From the schemas for equality we derive the obvious axiom schemas
for inequality 6= by reversing the entailments:

x 6= x ⊢ ⊥

Ay ⊢ x 6= y ∨Ax,

where in the last schema the variables x, y are not bound by a quan-
tifier of A.
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The schemas for inequality are just fine in classical mathematics.
Unfortunately, the introduction of a disjunction in a rule for a gen-
eralized inequality is unacceptable in constructive mathematics. In
general even denial inequality fails to obey the schemas.

To find a way out, suppose that Ax is the equation f(x) 6= t, where
f :S → S and x, t ∈ S. Classically that gives

f(y) 6= t ⊢ x 6= y ∨ f(x) 6= t.

Then one inequality introduces a disjunction of two inequalities. Re-
peated application implies that, unless we somehow interfere, we end
up with disjunctions of inequalities, a prospect unacceptable in con-
structive mathematics. The partial solution proposed in this paper
is, to replace the introduction of disjunctions like

x1 6= y1 ∨ · · · ∨ xn 6= yn

by introducing differences among sequences of elements:

〈x1, . . . , xn〉 6= 〈y1, . . . , yn〉.

This seems to be the best that one can hope for without introducing
disjunctions, but it requires an extension from a definition of 6= on a
set S to a definition of 6= involving all powers Sn. The axiom schema
involves functions f :Sm → Sn only.

In §1 we show that in a first-order context the logical motivation
presented above provides us with a natural generalization of the no-
tion of inequality. In §2 we demonstrate the necessity and sufficiency
of difference in elementary algebra. In §3 we hint at a more general
formulation of difference, employing all powers SX rather than only
finite powers Sn.

§1. Difference Relations

We define difference relations and strong extensionality in a way
motivated by the discussion in §0, and show that they satisfy the
right properties. This presents us with the problem that the original
definition, though well-motivated, lacks the elegance of a compact set
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of axioms. Fortunately, with Propositions 1.5 and 1.6, we are able
to reduce the complicated definition below to a set of six axioms for
difference, and a simple schema for strong extensionality.

From here on we use boldface letters to represent sequences of
elements. Let S be a set, and let Λ be a set of partial functions
f :Sm → Sn between powers of S. Using partial functions rather than
total functions is useful for later when we discuss functions f :S → T
between different sets with difference relations. Then E(Λ) denotes
the smallest set of partial functions between powers of S that includes
Λ, all projections πi:S

n → S, and is closed under composition and
products. The set E = E(∅) is called the set of elementary maps. So
elementary maps f :Sm → Sn are such that for all i the coordinate
maps πif :S

m → S are projections.
A difference on S consists of relations 6=n on the powers Sn, all

usually written 6=, satisfying the axiom schemas

〈x, a〉 6= 〈y, a〉 → x 6= y; and(1)

f(y) 6= t → 〈x, f(x)〉 6= 〈y, t〉,(2)

where a ∈ S, x,y ∈ Sm, f :Sm → Sn ∈ E, and t ∈ Sn. We tacitly
assume that f(y), f(x), etc. are defined when they occur in formulas.
A difference is called proper if it satisfies the additional axiom schema

(3) ¬(〈〉 6= 〈〉).

A set Λ is strongly extensional with respect to a difference relation 6=
if (2) holds for all f ∈ E(Λ).

There are two questions that we must answer to justify our def-
inition of difference: Does it provide us with a useful theory; and
does it provide us with a natural generalization of the notion of non-
equivalence? We start with a quick look at the second question by
looking at the complement of difference and at the complement of
non-equivalence.

A difference induces relations ∼ on the sets Sn defined by x ∼ y ↔
¬x 6= y. We say x is nearby y if x ∼ y. Then ∼ satisfies the schemas

〈〉 ∼ 〈〉 if 6= is proper;

x ∼ y → 〈x, a〉 ∼ 〈y, a〉; and

〈x, f(x)〉 ∼ 〈y, t〉 → f(y) ∼ t,
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where a ∈ S, x,y ∈ Sm, f :Sm → Sn ∈ E, and t ∈ Sn. The
relation ∼ is symmetric (see Proposition 1.1) and, if 6= is proper,
reflexive; but ∼ need not be transitive. In Examples 1.14 and 1.15
we present models showing that even in classical mathematics it is
possible to have elements x, y, z such that x and y are nearby, y and z
are nearby, but x 6= z. So differences are essentially more general than
the complements of equivalence relations. Nearness is stable, that is,
¬¬x ∼ y implies x ∼ y.

A difference is an inequivalence if its nearness relation is an equiv-
alence relation on each of the powers Sn. From Proposition 1.16 it
follows that a difference is an inequivalence if and only if it is proper
and its corresponding nearness relation satisfies

(4) x ∼ y if and only if ∀i(xi ∼ yi).

A difference is an inequality if it satisfies

x ∼ y if and only if ¬¬x = y

for all n and x,y ∈ Sn. Obviously, inequalities are inequivalences.

Many natural examples of difference relations are derived from
equivalence relations. One easily verifies that each equivalence re-
lation ≡ induces an inequivalence by

x 6= y ↔ ¬x ≡ y,

where x ≡ y is short for ∀i(xi ≡ yi). The relation ∼ is the double
negation of ≡. The set Λ of all partial functions that preserve the
equivalence is a strongly extensional set. One example is the empty

inequivalence, where ≡ is the maximum equivalence relation and the
underlying set is one single equivalence class. The derived relation ∼
is identical to ≡. Another example is the denial inequality, where ≡ is
the minimum equivalence relation, that is, ≡ is the equality relation
=. All partial functions respect equality and the maximal equivalence
relation. So the set of all partial functions is strongly extensional with
respect to the empty inequivalence as well as the denial inequality.

1.1 Proposition. Differences are symmetric.
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Proof: From y 6= t we get 〈x,x〉 6= 〈y, t〉 for all x. Substitute t

for x and apply (1) repeatedly to get t 6= y. ⊣

1.2 Proposition. Let Λ be a strongly extensional set of partial
functions. Then for all f ∈ E(Λ),

(5) 〈f(x), z〉 6= 〈f(y),w〉 → 〈x, z〉 6= 〈y,w〉.

Proof: From 〈f(x), z〉 6= 〈f(y),w〉 we get, using (2),

〈p,q, f(p),q〉 6= 〈x, z, f(y),w〉

for all p and q with f(p) defined. Substituting y for p and w for
q gives us 〈y,w, f(y),w〉 6= 〈x, z, f(y),w〉. By repeated application
of (1) we get 〈y,w〉 6= 〈x, z〉. So by Proposition 1.1, 〈x, z〉 6= 〈y,w〉. ⊣

1.3 Corollary.

〈x, a, a〉 6= 〈y, b, b〉 → 〈x, a〉 6= 〈y, b〉;(6)

x 6= y → 〈x, a〉 6= 〈y, b〉; and(7)

〈xπ1, . . . , xπn〉 6= 〈yπ1, . . . , yπn〉 → 〈x1, . . . , xn〉 6= 〈y1, . . . , yn〉,(8)

where π is a permutation on {1, . . . , n}. ⊣

1.4 Proposition.

〈x, a〉 6= 〈y, b〉 → 〈x, b〉 6= 〈y, a〉;(9)

〈x, a〉 6= 〈y, b〉 → 〈x, a, c〉 6= 〈y, c, b〉.(10)

Proof: From the assumption of (9) we get 〈z, c, z, c〉 6= 〈x, a,y, b〉
for all z and c. Substitute x for z and b for c to get 〈x, b,x, b〉 6=
〈x, a,y, b〉. So by (8) and (1) we have 〈x, b〉 6= 〈y, a〉.

The assumption of (10) implies 〈z, c, z, c〉 6= 〈x, a,y, b〉 for all z.
Substitute x for z and use (8) and (1) to get 〈x, c, c〉 6= 〈y, a, b〉. So
by (8) and (9) we have 〈x, a, c〉 6= 〈y, c, b〉. ⊣

1.5 Proposition. Let 6= be a relation on the powers Sn of a set
S. Then 6= is a difference if and only if the following conditions hold.
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〈x, a〉 6= 〈y, a〉 → x 6= y;(1)

〈x, a, a〉 6= 〈y, b, b〉 → 〈x, a〉 6= 〈y, b〉;(6)

x 6= y → 〈x, a〉 6= 〈y, b〉;(7)

〈xπ1, . . . , xπn〉 6= 〈yπ1, . . . , yπn〉 → 〈x1, . . . , xn〉 6= 〈y1, . . . , yn〉;(8)

〈x, a〉 6= 〈y, b〉 → 〈x, b〉 6= 〈y, a〉; and(9)

〈x, a〉 6= 〈y, b〉 → 〈x, a, c〉 6= 〈y, c, b〉,(10)

where (8) holds for all permutations π.

Proof: Clearly conditions (1), and (6) through (10) hold for a
difference relation. Conversely, suppose we have relations 6= on the
powers Sn of a set S satisfying the conditions above. To prove (2),
let f :Sm → Sn be an elementary map such that f(y) 6= t. The map
f is a sequence of projections (πλ1, . . . , πλn). So 〈yλ1, . . . , yλn〉 6= t.
Repeated application of (8) and (10) yields 〈yλ1, xλ1, . . . , yλn, xλn〉 6=
〈xλ1, t1, . . . , xλn, tn〉. So by (8), 〈f(y), f(x)〉 6= 〈f(x), t〉. Applying (8)
and (9) repeatedly we get 〈f(x), f(x)〉 6= 〈f(y), t〉. So by (6), (7), and
(8) we get 〈x, f(x)〉 6= 〈y, t〉. ⊣

Proposition 1.5 has two applications. First, it replaces schema (2)
by a short sequence of elementary rules. Secondly, it suggests natural
ways for generalizing difference relations. Prime choices are general-
izations 6= satisfying the conditions of Proposition 1.5 but with (6)
or (10) removed. The structure of Example 1.15.1 satisfies all the
conditions of Proposition 1.5, except (6). On domain S = Z, define
x 6= y by |xi − yi| ≥ 2 for some i. Then 6= is a generalized difference
relation satisfying all conditions of Proposition 1.5, except (10).

The definition of strongly extensional sets of functions allows for
the possibility that a set need not be strongly extensional even if
all its members are. Fortunately, this does not happen. Theorem
1.6 expresses strong extensionality of sets in terms of the individual
functions.

1.6 Theorem. Let 6= be a difference on S and let Λ be a set of
partial functions between finite powers on S. Then Λ is a strongly
extensional set if and only if each f ∈ Λ satisfies the schema

(5) 〈f(x), z〉 6= 〈f(y),w〉 → 〈x, z〉 6= 〈y,w〉.
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Proof: By Proposition 1.2 (5) follows from the strong extension-
ality of Λ. Conversely, suppose that (5) holds for all f ∈ Λ. A
trivial induction on the complexity of f shows that (5) holds for
all f ∈ E(Λ). Now suppose f(y) 6= t and f(x) exists, for some
f ∈ E(Λ). Substitution in the schema h 6= t → 〈g,g〉 6= 〈h, t〉 gives
〈f(x), f(x)〉 6= 〈f(y), t〉. Applying (5) yields 〈x, f(x)〉 6= 〈y, t〉. ⊣

By Theorem 1.6 we are justified to define a function f to be strongly
extensional if it satisfies the schema (5).

1.7 Proposition. Constant functions are strongly extensional.

Proof: Let f be a constant function with value a. Then 〈a, z〉 6=
〈a,w〉 implies z 6= w, and thus 〈x, z〉 6= 〈y,w〉. ⊣

By Theorem 1.6 we know that the collection of strongly extensional
functions is closed under composition and product. Next we show
that the collection is also closed under a natural form of implicit
definition. Traditionally, a (partial) function h is implicitly defined
by the (partial) functions f and g when f(x, hy) and g(x, hy) exist
whenever hx and hy exist; when f(x, hx) = g(x, hx) whenever hx
exists; and when f(x, p) = g(x, p) ∧ f(x, q) = g(x, q) implies p = q,
for all x, p, q. In ring theory, for example, the partial function of
multiplicative inverse is implicitly definable from multiplication and
the constant 1. We show that functions that are implicitly defined in
the way explained below are strongly extensional if the functions used
in its construction are.

Let S be a set with difference 6=. A partial function h is implicitly

defined with respect to 6= if there exist strongly extensional partial
functions f and g such that f(x,h(y)) and g(x,h(y)) are defined
whenever h(x) and h(y) are defined, satisfying

f(x,h(x)) = g(x,h(x)) whenever h(x) is defined; and

〈p, z〉 6= 〈q,w〉 → 〈f(x,p), f(x,q), z〉 6= 〈g(x,p),g(x,q),w〉

whenever f(x,p), f(x,q), g(x,p) and g(x,q) are defined.

1.8 Proposition. Partial functions that are implicitly defined
with respect to a difference relation are strongly extensional.

Proof: Let h(x) = y be implicitly defined with respect to a differ-
ence by the equation f(x,y) = g(x,y). Suppose 〈h(r), z〉 6= 〈h(s),w〉.
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For all x such that h(x) is defined we have 〈f(x,h(r)), f(x,h(s)), z〉 6=
〈g(x,h(r)),g(x,h(s)),w〉. Substitute x = r. Using f(r,h(r)) =
g(r,h(r)) we get 〈f(r,h(s)), z〉 6= 〈g(r,h(s)),w〉. By (2) we have
〈s, f(s,h(s)), z〉 6= 〈r,g(r,h(s)),w〉. By (8) and (10),

〈s, f(s,h(s)),g(s,h(s)), z〉 6= 〈r,g(s,h(s)),g(r,h(s)),w〉.

Since f(s,h(s)) = g(s,h(s)) and g is strongly extensional we have
〈s, s,h(s), z〉 6= 〈r, r,h(s),w〉. So 〈r, z〉 6= 〈s,w〉. Thus h is strongly
extensional. ⊣

If there exists x such that x 6= x, then everything is different from
everything in each Sn, as follows from Proposition 1.9 below.

1.9 Proposition. For all x, y and z we have x 6= x → y 6= z.

Proof: Suppose x 6= x for some x. Repeated application of (1)
implies 〈〉 6= 〈〉. Repeated application of (7) then yields y 6= z for all
y and z. ⊣

So a difference is proper if and only if it is contained in the denial
inequality.

The tight apartness on the real numbers R was introduced by L. E.
J. Brouwer [2] and subsequently axiomatized by A. Heyting in 1925
(see [6]). The following is a new way of defining apartness relations:
By employing the notion of difference relation. An apartness is a
proper difference relation satisfying the extra axiom schema

x 6= y ↔ (xi 6= yi for some i),

for all n and x,y ∈ Sn. By Proposition 1.16, an apartness is an
inequivalence. By Propositions 1.4 and 1.9 an apartness must satisfy
the well-known conditions

¬a 6= a;(11)

a 6= b → b 6= a; and(12)

a 6= b → (a 6= c ∨ c 6= b).(13)

An apartness relation is tight if ¬a 6= b implies a = b. A tight apart-
ness is an inequality. By Proposition 1.6, a function f is strongly
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extensional if and only if f(x) 6= f(y) implies that xi 6= yi for some
i. Properties (11), (12), and (13) suffice to reconstruct an apartness
relation.

1.10 Proposition. Let 6= be a binary relation on S. Define 6= on
Sn by x 6= y if and only if xi 6= yi for some i. If 6= satisfies (1), (12),
and (13), then the extension to all Sn is a difference. If 6= satisfies
(11), (12), and (13), then it is an apartness.

Proof: Clearly, (11) implies (1). As to (2), let f :Sm → Sn be
an elementary map, y ∈ Sm, and t ∈ Sn such that f(y) 6= t. So
πif(y) 6= ti for some i. If πif is the projection on the jth coordinate,
then yj 6= ti. So xj 6= yj as jth coordinate of 〈x, f(x)〉 6= 〈y, t〉, or
xj 6= ti as (m+ i)th coordinate of 〈x, f(x)〉 6= 〈y, t〉. ⊣

The standard example of a tight apartness relation is the one on
the real line. Define r 6= s if and only if there exists a positive natural
number n such that |r − s| > 1/n.

A generalization of the apartness on R is the apartness on local
rings. A local ring is a ring (satisfying the usual universal properties
for rings) such that if r + s is a unit, then r is a unit or s is a unit.
A local ring is nontrivial if 1 is not equal to 0. A Heyting field is a
nontrivial commutative local ring such that 0 is the only nonunit, that
is, if r is not a unit, then r = 0. The real numbers form a Heyting
field (see [10]).

Let R be a local ring. Define r 6= s if and only if r− s is a unit. If
r− s is a unit, then s− r is a unit. So 6= is symmetric. If r 6= s, then
r − t + t − s is a unit, so by the local ring property, r − t is a unit
or t − s is a unit. Thus r 6= t or t 6= s. If r 6= r, then 0 is a unit, so
s 6= t for all s and t. By Proposition 1.10 6= is a difference relation on
R. It is an apartness on R if and only if R is nontrivial. If R is com-
mutative, then 6= is a tight apartness if and only if R is a Heyting field.

Unions and intersections of differences are again differences:

1.11 Proposition. Let 6=i, i ∈ I, be a collection of relations, each
defined on all finite powers of S simultaneously. Define 6= by x 6= y

if and only if x 6=i y for some i ∈ I. If all 6=i satisfy one of the
properties (1) through (3) or (6) through (13) then 6= satisfies that
same property. In particular, if all 6=i are differences, then so is 6=; if
all 6=i are proper, then so is 6=; and if all 6=i are apartnesses, then so
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is 6=. If all 6=i are inequivalences, then so is 6=.

Proof: The cases for conditions (1) through (3) and conditions
(6) through (13) immediately follow from their logical form. Suppose
that all 6=i are inequivalences, and suppose that x ∼ y and y ∼ z.
Then x ∼i y and y ∼i z for all i. So x ∼i z for all i, and thus x ∼ z. ⊣

1.12 Proposition. Let 6=i, i ∈ I, be a collection of relations,
each defined on all finite powers of S simultaneously. Define 6= by
x 6= y if and only if x 6=i y for all i ∈ I. If all 6=i satisfy one of the
properties (1) through (3) or (6) through (12) then 6= satisfies that
same property. In particular, if all 6=i are differences, then so is 6=;
and if at least one 6=i is proper, then so is 6=.

Proof: The cases for conditions (1) through (3) and conditions
(6) through (12) immediately follow from their logical form. ⊣

1.13 Proposition. Let {6=i}i be a collection of differences on a
set. Then partial functions that are strongly extensional with respect
to all 6=i are also strongly extensional with respect to their union and
intersection.

Proof: Suppose 6= is the union of the differences 6=i, and let f be
strongly extensional with respect to all 6=i. If 〈f(x), z〉 6= 〈f(y),w〉,
then 〈f(x), z〉 6=i 〈f(y),w〉 for some i. So 〈x, z〉 6=i 〈y,w〉, and thus
〈x, z〉 6= 〈y,w〉. A similar argument works for the intersection case.
⊣

Local rings with inequality defined by r 6= s if and only if r − s is
invertible, are examples of structures that need not have a proper dif-
ference relation. The standard difference on a local ring is proper only
if the ring is nontrivial. For some applications, however, it may be
essential to have a proper difference. In that case Proposition 1.12 is
useful: Intersect the existing difference with denial inequality to make
it proper. All functions are strongly extensional with respect to the
denial inequality. Then Proposition 1.13 guarantees that functions
that are strongly extensional with respect to the original difference
are still strongly extensional with respect to the intersection of the
original difference with denial inequality.

1.14 Examples. Even in classical mathematics intersections of
inequivalences need not be inequivalences. So we use Proposition 1.12
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to construct an example of a discrete set with a decidable difference
relation that is not an inequivalence.

1.14.1. Consider the discrete set S = {a, b, c} with differences 6=1

and 6=2 that are complements of the equivalence relations on S with
partitions {{a, b}, {c}} and {{a}, {b, c}} respectively. Then the inter-
section 6= of 6=1 and 6=2 is such that a 6= c, a ∼ b, and b ∼ c. So
6= is a decidable difference that is not the complement of a transitive
relation even though 6=1 and 6=2 are decidable apartnesses. Thus dif-
ferences are essentially more general than complements of equivalence
relations.

1.14.2. Even if a difference is such that for some n the associ-
ated nearness is an equivalence relation on Si for all i < n, then
it still need not be an inequivalence. Example: Let R be a non-
trivial commutative ring, and set S = Rn. Define x 6= y if and only
if S =

∑

i(xi − yi)R. By Proposition 1.5 6= is a difference on S.
Then x ∼ y for all i < n and x,y ∈ Si. But the nearness relation
is not an equivalence in Sn, for if e1, . . . , en is a basis of S, then
〈0, 0, . . . , 0〉 ∼ 〈0, e2, . . . , en〉 and 〈0, e2, . . . , en〉 ∼ 〈e1, e2, . . . , en〉, but
〈0, 0, . . . , 0〉 6= 〈e1, e2, . . . , en〉.

1.14.3. If 6= is an apartness relation, then the schema

f(x) 6= f(y) → x 6= y

suffices to show that f is strongly extensional. In general the schema
is insufficient as it is essentially weaker than (5). Let S be the discrete
set of Example 1.14.1 with decidable difference 6=. Define f :S → S
by f(a) = a, f(b) = a, and f(c) = b. Then the schema above holds
since f(x) ∼ f(y) for all x, y ∈ S. But f is not strongly extensional
since 〈f(b), b〉 6= 〈f(c), c〉 and 〈b, b〉 ∼ 〈c, c〉.

1.15 Examples. Let (S, d) be a set S with pseudometric d, that is,
d is a function from S2 to R such that d(x, x) = 0, d(x, y) = d(y, x),
and d(x, z) ≤ d(x, y) + d(y, z). It is well-known that a pseudometric
induces an apartness relation on S by s 6= t if and only if d(s, t) > 0.
The apartness is tight if and only if the pseudometric is a metric.
Let r be a real number. A difference with resolution r ≥ 0 on S is a
difference 6= satisfying a 6= b if d(a, b) > r, and a ∼ b if d(a, b) < r,
for all a, b ∈ S. So the standard apartness on S is a difference with
resolution 0. For each r ≥ 0, do there exist differences with resolution
r on S?
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1.15.1. Before resolving this question, consider the following non-
example. Define x 6=r y if and only if

∑

i d(xi, yi) > r. Then 6=r

satisfies the conditions of Proposition 1.5 except for condition (6).
Functions f satisfy (5) if

∑

j d(fj(x), fj(y)) ≤
∑

i d(xi, yi). This non-
example suggests ways by which to generalize the notion of difference
relation.

1.15.2. To construct differences with resolution r on S, we follow a
less elegant route. A subset X ⊆ S is open if for all x ∈ X there exists
ε > 0 such that B(x, ε) ⊆ X, where B(x, ε) = {y ∈ S | d(x, y) < ε}.
For each pair of open sets p = (Ap, Bp) such that Ap ∪ Bp = S we
define the difference 6=p by x 6=p y if and only if there exists i such
that d(xi, yi) > 0, and xi ∈ A and yi ∈ B, or xi ∈ B and yi ∈ A.
We easily verify that 6=p is an apartness relation. For A ⊆ S and
r ∈ R, define d(A) < r to mean that d(a, b) < r for all a, b ∈ A.
Similarly, d(A) > r means that d(a, b) > r for some a, b ∈ A. A cover

of S is a collection γ of pairs p = (Ap, Bp) of open sets Ap and Bp

with Ap ∪ Bp = S, such that ∪p∈γAp = S. By Proposition 1.11, the
union 6=γ of the apartnesses 6=p is again an apartness. A cover γ has
refinement r if d(Ap) < r for all p ∈ γ. Clearly, if γ has refinement
r, then a 6=γ b whenever d(a, b) > r. Let 6=r be the intersection of all
covers 6=γ of refinement r. We leave it as an exercise to show that 6=r

is a difference with resolution r. If r ≤ s, then ( 6=s) ⊆ ( 6=r).
Unfortunately, difference relations 6=r usually have few strongly ex-

tensional functions.

A nearness relation associated with an inequivalence is completely
determined by its binary relation ∼ on S:

1.16 Proposition. An difference is an inequivalence if and only
if it is proper and satisfies

(4) x ∼ y ↔ ∀i(xi ∼ yi).

Proof: Suppose 6= is proper and satisfies (4). Obviously, ∼ is
reflexive and symmetric. Let x ∼ y and y ∼ z. Then by (4) 〈x,y〉 ∼
〈y, z〉. Repeated application of (8) and (10) yields x ∼ z. Conversely,
suppose that the difference is an inequivalence. Reflexivity implies
that 6= is proper, and (7) and (8) imply x ∼ y → ∀i(xi ∼ yi). Sup-
pose x ∼ y and a ∼ b. It suffices to show 〈x, a〉 ∼ 〈y, b〉. This follows
immediately from 〈x, a〉 ∼ 〈x, b〉 and 〈x, b〉 ∼ 〈y, b〉, and the transi-
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tivity of ∼. ⊣

1.17 Lemma. A proper difference is an inequality if and only if
¬a = b implies ¬¬a 6= b, for all a, b.

Proof: Suppose 6= is a proper difference such that ¬a = b implies
¬¬a 6= b, for all a, b. From Proposition 1.9 it follows that x 6= x

implies ⊥. So we have x 6= y → ¬x = y. Assume ¬x = y. Then
¬¬∃i¬xi = yi. So ¬¬∃i¬¬xi 6= yi. And thus ¬¬∃ixi 6= yi, hence
¬¬x 6= y. So 6= is an inequality.

The converse is trivial. ⊣

1.18 Corollary. The union of a proper difference and an in-
equality is an inequality.

Proof: Let 6= be the union of a proper difference 6=1 and an in-
equality 6=2. By Proposition 1.11, 6= is a proper difference. Suppose
¬a = b. Then ¬¬a 6=2 b, so ¬¬a 6= b. So by Lemma 1.17 6= is an
inequality. ⊣

There is no unique way to define what a strongly extensional re-
lation is. In this paper we present two ways. One involves functions
between sets with differences.

We may identify an n-ary relation on a set S with a function from
Sn to Ω = P{0}, the truth value object. Following an approach along
that line, an n-ary relation is a special case of a function f :S → T
between sets with differences, be it that we have to choose a difference
relation for Ω. If there exists a set U = S∪T with difference such that
this difference with restriction to S and T is the difference of S and
T respectively, then f is just a partial function f :U → U . Instead of
the union of S and T there may be difference maintaining embeddings
of S and T into a set U with difference, that is, the differences on S
and T are the same as those of U restricted to the images of S and
T respectively. If such U exist, then define f :S → T to be strongly

extensional if f :U → U is strongly extensional in the sense of Theorem
1.6. This definition of strong extensionality depends on our choice of
U and on the difference on U .

In many cases there is a natural choice for U . If f :Sm → Sn is
a map between powers of a set S with difference, then Sm and Sn

are sets with differences induced by the difference of S. For all k,
the embedding f :Sk → Sk+1 defined by f〈x, a〉 = 〈x, a, a〉 maintains
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difference. So choose U = Sp with p = max (m,n). There exist
difference preserving maps of Sm and Sn into Sp. Then f :Sm → Sn is
strongly extensional as defined in Theorem 1.6 if and only if f :U → U
is strongly extensional in the sense of Theorem 1.6.

If there is no choice for U as described in the example above, the
disjoint union can be an alternative. Let U = S ∐ T . We extend
the difference relations of S and T to U , and consider the function
f :S → T as partial function fU :U → U . Define 6= on powers Un

by setting x 6= y if and only if either for some i, xi and yi come
from different sets S and T , or else, up to a permutation π of the in-
dices, there exist s1, s2 ∈ Sp and t1, t2 ∈ T q such that πx = 〈s1, t1〉,
πy = 〈s2, t2〉, and s1 6= s2 over S or t1 6= t2 over T . The relation 6=
on U is called the canonical extension of the difference relations on S
and T .

1.19 Proposition. Let S and T be sets with proper difference
relations, and let U = S∐T be the disjoint union. Then the canonical
extension 6= to U is a proper difference relation whose restrictions to
S and T are the differences on S and T respectively.

Proof: Clearly, the canonical extension satisfies (1) and (3), and
the restrictions of 6= to S and T reproduce the original differences on
them. Note that this requires the differences on S and T to be proper.
Let f :Um → Un be an elementary map such that f(y) 6= t. Then f

is a sequence of projections (πλ1, . . . , πλn). So 〈yλ1, . . . , yλn〉 6= t. If
yλi 6= ti for some i because they are from different sets S and T , then
for the same reason 〈xλi, xλi〉 6= 〈yλi, ti〉, and so by repeated appli-
cation of (7), (8) and (10) 〈x, f(x)〉 6= 〈y, t〉. Otherwise, suppose we
have x 6= y because for some i, xi and yi are from different sets S
and T . Then by (7), 〈x, f(x)〉 6= 〈y, t〉. Finally, suppose that for all
i either both xi and yi are in S or both are in T , and that for all i
either both yλi and ti are in S or both are in T . Then there exists
a permutation π such that πf(y) = 〈fS(y), fT (y)〉 and πt = 〈tS , tT 〉,
where fS(y) 6= tS over S or fT (y) 6= tT over T . Let xS , xT , yS , and
yT be the subsequences of x and y of elements that belong to S and T
respectively. Then 〈xS , fS(x)〉 6= 〈yS , tS〉 or 〈xT , fT (x)〉 6= 〈yT , tT 〉.
After merging the two relations, we get 〈x, f(x)〉 6= 〈y, t〉. ⊣

The assumption of properness is essential in Proposition 1.19. If
we don’t assume the differences on S and T are proper, we may not
be able to derive (1) for the canonical extension 6= on S ∐ T . If for
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example s 6= s for some s ∈ S, then 〈s, t〉 6= 〈s, t〉 for all t ∈ T , and
thus by (1) we would have t 6= t for all t ∈ T . So the difference on T
could not be proper either.

Another way to define strongly extensional n-ary relations is by
returning to the original classical axiomatization of inequality:

x 6= x ⊢ ⊥

Ay ⊢ x 6= y ∨Ax,

where in the last schema the variables x, y are not bound by a quanti-
fier of A. We wish to replace the right hand side of the second schema
by a difference between sequences 〈x,A〉 6= 〈y, x〉. So defining strong
extensionality for relations using sequences reduces to introducing a
new constant A to S and extending the difference relation from S to
S∪{A}. Let R be an n-ary relation on S. Then R is a unary relation
on Sn. Rather than defining strong extensionality of R over S, we
define strong extensionality of R over Sn. So without loss of gener-
ality we define strong extensionality for unary relations only. Let R
be a unary relation on a set S with difference. Then R is strongly

extensional if there is an extension U = S ∪ {r} with difference rela-
tion, such that the difference of U with restriction to S is the original
difference of S, and such that for all s ∈ S, Rs holds if and only if
s 6= r.

1.20 Example. Let S be a set with apartness, and let R be a
unary relation on S satisfying

(14) Rs → (s 6= t ∨Rt).

Then R is strongly extensional: The apartness of S extends to an
apartness on S ∪{r} by setting r 6= s if and only if Rs. Conversely, if
the difference on S ∪ {r} is an apartness, then R satisfies (14).

§2. Applications to Algebra

Groups and rings with differences are defined by the usual universal
axioms together with the condition that the standard functions are
strongly extensional. So a group G with difference consists of a set
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G with a difference relation, constant e, unary function −1:G → G,
and binary function ·:G × G → G such that −1 and · are strongly
extensional and such that for all g, h, i ∈ G we have

g · e = e · g = g;

g · (h · i) = (g · h) · i; and

g · g−1 = g−1 · g = e.

2.1 Proposition. Let G be a group with a difference relation on
the underlying set. Then G is a group with difference if and only if
for all a, b, x, c,d we have that 〈a, c〉 6= 〈b,d〉 implies 〈ax, c〉 6= 〈bx,d〉
and 〈xa, c〉 6= 〈xb,d〉.

Proof: It suffices to show that multiplication and inverse are
strongly extensional. Suppose 〈ab, z〉 6= 〈cd,w〉. Multiply by c−1

on the left and by b−1 on the right to get 〈c−1a, z〉 6= 〈db−1,w〉. So
〈c−1a, 1, z〉 6= 〈1, db−1,w〉. So after two more multiplications we arrive
at 〈a, b, z〉 6= 〈c, d,w〉. Thus multiplication is strongly extensional.

The strong extensionality of the inverse follows from Proposition
1.8 with f(x, y) = xy and g(x, y) = 1. ⊣

Let G be a group with normal subgroup N . Define 6=N by x 6=N y

if and only if the normal subgroup generated by {. . . , xiy
−1
i , . . . } con-

tains N . One easily verifies that 6=N satisfies the conditions of Propo-
sitions 1.5 and 2.1. So G with 6=N is a group with difference.

The following example of a group with difference was suggested
to us by Fred Richman. It illustrates that there exists an elementary
algebraic structure whose natural relation 6= is a difference that cannot
be shown to be an inequivalence. Let Z be the group of integers and
letN be the set of natural numbers. Define Q to be the quotient group
Q = ZN/

∑

N
Z. A natural way to define an inequality on Q would be

to set a 6= 0 if and only if there are infinitely many n ∈ N such that
a(n) is not 0, that is, for all m > 0 there exists n > m such that a(n)
is not 0. Define 6= by 〈a1, . . . ,an〉 6= 0 if and only if there are infinitely
many elements unequal to 0; and 〈a1, . . . ,an〉 6= 〈b1, . . . ,bn〉 if and
only if 〈a1 − b1, . . . ,an − bn〉 6= 0. It is immediate from Propositions
1.5 and 2.1 that this makes Q a group with difference.
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A subset X ⊆ Y is detachable from Y if the union of X and its
complement equals Y . Let E be the set of even numbers and let O be
the set of odd numbers. So E and O are countably infinite detachable
subsets of N such that E ∪ O = N, and E ∩ O = ∅. Consider the
principle EO: If A ⊆ N is a detachable subset such that A ∩ E and
A ∩O are not infinite, then A is not infinite.

Now assume that the difference 6= on Q is an inequivalence. Let
A ⊆ N be a detachable subset such that A ∩ E and A ∩ O are not
infinite. Define a, b ∈ Q by a(n) = 1 if and only if 2n ∈ A, and
b(n) = 1 if and only if 2n+ 1 ∈ A. Then a ∼ 0 and b ∼ 0. If 6= is an
inequivalence, then 〈a, b〉 ∼ 0. But this means that A is not infinite.
So if 6= is an inequivalence, then EO holds.

The principle EO is not derivable in constructive mathematics.
In §4 we present a topos EG whose natural number object N has a
detachable subset X such that both X and N \ X are not infinite.
EO implies that there exists no such X: a detachable infinite subset
A ⊆ N is isomorphic to N, and A∩E and A∩O then are isomorphic
to a partition X and N \X of detachable subsets of N.

A ring with difference is a set R with difference satisfying the well-
known universal axioms for zero, one, addition and multiplication such
that addition and multiplication are strongly extensional. A ring is
nontrivial if 1 6= 0. The partial function of multiplicative inverse
f(x) = x−1 is implicitly defined by the equation xy = 1, hence by
Proposition 1.8 is strongly extensional.

2.2 Proposition. Let R be a ring with a difference relation on the
underlying set. Then R is a ring with difference if and only if for all
a, b, x, c,d we have that 〈a, c〉 6= 〈b,d〉 implies 〈a+ x, c〉 6= 〈b+ x,d〉,
and 〈ab, c〉 6= 〈0,d〉 implies 〈b, c〉 6= 〈0,d〉 and 〈a, c〉 6= 〈0,d〉.

Proof: By Proposition 2.1 the additive abelian group is a group
with difference. Suppose 〈ab, z〉 6= 〈cd,w〉. Then

〈ab, ad, z〉 6= 〈ad, cd,w〉.

So 〈a(b−d), (a−c)d, z〉 6= 〈0, 0,w〉, and thus 〈b−d, a−c, z〉 6= 〈0, 0,w〉.
So 〈a, b, z〉 6= 〈c, d,w〉. ⊣

The abelian group Q above is a ring with difference with multipli-
cation a · b = c with c(n) = a(n)b(n) for all n.
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Let R be a ring, I a two-sided ideal of R. Define 6=I by x 6=I y if
and only if the ideal

∑

i R(xi − yi)R contains I. We immediately see
from Propositions 1.5 and 2.2 that this makes R a ring with difference
6=I .

2.3 Proposition. Let R be a ring with difference, and let n > 0.
Then we have

〈ax1, . . . , axn,y〉 6= 0 → 〈a,y〉 6= 0;(i)

x 6= 0 → 1 6= 0;(ii)

〈an,y〉 6= 0 → 〈a,y〉 6= 0; and(iii)

〈an, b+ ac,x〉 6= 0 → 〈a, b,x〉 6= 0.(iv)

Proof: For (i) we have

〈ax1, . . . , axn,y〉 6= 0 → 〈ax1, . . . , axn,y〉 6= 〈0x1, . . . , 0xn, 0〉.

So 〈a,y〉 6= 0.
(ii) follows immediately from (i).
By (i), 〈an+1,y〉 6= 0 implies 〈an,y〉 6= 0. Repeated application

yields (iii).
For (iv), 〈an, b+ ac,x〉 6= 〈0n, 0 + 0c, 0, . . . , 0〉, so 〈a, b,x〉 6= 0. ⊣

The polynomial ring R[X] over a commutative ring R with differ-
ence is defined in the usual way. It remains to construct a difference
on R[X]. R[X] can be considered as a subset of

⋃

n∈N
Rn, and so

borrows the difference from R by defining 〈f1, . . . , fn〉 6= 〈g1, . . . , gn〉
if and only if the sequences of coefficients differ over R, that is,

〈a01, . . . , am1, . . . , a0n, . . . , amn〉 6= 〈b01, . . . , bm1, . . . , b0n, . . . , bmn〉,

where fi = a0i + · · · + amiX
m and gi = b0i + · · · + bmiX

i. We
easily see that the addition and multiplication operations of R[X] are
strongly extensional since they are built up from the addition and
multiplication operations of R.

We say deg f ≤ n if f = a0 + · · · + anX
n for some ai ∈ R.

We say deg f ≥ n if f = g + hXn for some g, h ∈ R[X] with
deg g ≤ n − 1 and h 6= 0. Let g = b0 + · · · + bmXm for some
bi ∈ R. We say deg f ≤ deg g if for all k, 〈ak, . . . , an〉 6= 0 implies



20 WIM RUITENBURG

〈bk, . . . , bm〉 6= 0. We say deg f < deg g if for all k, 〈ak, . . . , an〉 6= 0
implies 〈bk+1, . . . , bm〉 6= 0.

The definition of integral domain presents us with the problems of
establishing what structures we want to be integral domains, and what
properties we should be able to derive for integral domains. The ring
Z of integers and the ring R of real numbers with apartness must be
integral domains; integral domains must have quotient fields, where a
field is an integral domain such that a is invertible whenever a 6= 0;
and polynomial rings in one variable over integral domains must be
integral domains.

A commutative ring with difference is an integral domain with dif-

ference if it satisfies:

1 6= 0;(1)

a 6= 0 ∧ ab = 0 → b = 0;(2)

a 6= 0 ∧ b 6= 0 → ab 6= 0;(3)

x 6= 0 ∧ 〈. . . , xib, . . . 〉 = 0 → b = 0; and(4)

x 6= 0 ∧ y 6= 0 → 〈. . . , xiyj , . . . 〉 6= 0.(5)

A field with difference is an integral domain with difference satisfying

(6) If a 6= 0 then a is invertible.

Clearly, (4) implies (2), and (5) implies (3). Let

R = Z[X,Y, Z]/(XZ, Y Z,Z2),

and let I = XR+Y R, the ideal generated by X and Y . Define x 6= y

if and only if the ideal
∑

i(xi − yi)R contains some power In of I.
Then R is a commutative ring with difference. We have a 6= 0 if and
only if a = 1 + rZ or −1 + rZ for some r ∈ R. So a 6= 0 if and only
if a is a unit. We easily verify that R satisfies (1), (2), (3), (5), and
(6). But (4) fails since 〈X,Y 〉 6= 0 and 〈XZ, Y Z〉 = 0.

Let R = Z[X,Y ]. Define x 6= y if and only if the ideal
∑

i(xi−yi)R
contains the ideal I = XR+Y R. Then R is a commutative ring with
difference, and a 6= 0 if and only if a = 1 or−1. So we easily verify that
R satisfies (1), (2), (3), (4), and (6). But (5) fails because 〈X,Y 〉 6= 0
while 〈X2, XY, Y 2〉 ∼ 0.
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Let Z be the ring of integers. The prime ideals 2Z and 3Z in-
duce the usual decidable equivalence relations ∼2 and ∼3 on Z with
corresponding difference relations 6=2 and 6=3. The standard ring op-
erations preserve the equivalences, so Z is an integral domain with
difference with respect to 6=2 as well as with respect to 6=3. Let 6= be
the intersection of 6=2 and 6=3. Then by Proposition 1.13 Z is an inte-
gral domain with difference with respect to 6=. Note that the decidable
relation 6= is not an inequivalence as 2 ∼ 0 and 3 ∼ 0, while 〈2, 3〉 6= 0.

2.4 Proposition. Let R be a commutative ring with difference
satisfying (1), (2) and (3). If 6= is an apartness, then R is an integral
domain. If 6= is denial inequality and equality is stable, that is, ¬¬a =
b implies a = b, then R is an integral domain.

Proof: The case for apartness is trivial.

Suppose that 6= is denial inequality and = is stable. If x 6= 0 and
〈. . . , xiy, . . . 〉 = 0, then ¬¬∃i(xi 6= 0∧xiy = 0). So ¬¬y = 0, and thus
y = 0. That proves (4). Let x and y be such that x 6= 0, y 6= 0, and
〈. . . , xiyj , . . . 〉 = 0. Then for all i and j we have ¬¬(xi = 0∨ yj = 0).
So for all i, ¬¬(xi = 0∨y = 0). Thus ¬¬(x = 0∨y = 0). Contradic-
tion. Thus R satisfies (5). ⊣

So not only the ring Z and the ring R with apartness, but even the
ring of real numbers R with denial inequality is an integral domain
with difference.

From [10, p. 47] we know that (1) (2), and (3) are necessary and
sufficient to embed a commutative ring with difference in a field. The
quotient field Q of an integral domain R is constructed by localiz-
ing to the set S = {s ∈ R | s 6= 0}. Then S is a multiplicative set
because of (1) and (3), and R embeds in Q because of (2). The differ-
ence on Q is defined by 〈x1/s1, . . . , xn/sn〉 6= 0 over Q if and only if
〈x1, . . . , xn〉 6= 0 over R. Obviously, this relation satisfies (1), (4) and
(5).

It remains to present the motivations for (4) and (5) in the defini-
tion of integral domains with difference. Suppose R[X] is a commuta-
tive ring satisfying (2). Then for all f =

∑

i xiX
i 6= 0 and y ∈ R such

that fy = 0, we have y = 0. So R satisfies (4). Suppose R[X] is a
commutative ring satisfying (3). Let f =

∑

i xiX
i and g =

∑

j yjX
j
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be such that f 6= 0 and g 6= 0. Then fg 6= 0. So

〈x0y0, . . . ,
∑

k

xkyh−k, . . . , xmyn〉 6= 0.

Using the strong extensionality of addition we get 〈. . . , xiyj , . . . 〉 6= 0.
Thus R satisfies (5). So if polynomial rings R[X] over integral do-
mains R must be integral domains themselves, then (4) and (5) are
necessary. With Proposition 2.7 we establish that (1) through (5) are
sufficient.

2.5 Lemma. Let R be a commutative ring with difference satisfying
(5). Then

〈a1, . . . , an〉 6= 0 → 〈am1 , . . . , amn 〉 6= 0;(i)

〈a,x〉 6= 0 ∧ 〈b,x〉 6= 0 → 〈ab,x〉 6= 0.(ii)

Proof: 〈a1, . . . , an〉 6= 0 implies 〈. . . , aiaj , . . . 〉 6= 0. Repeated ap-
plication of Proposition 2.3.(i) yields 〈a1, . . . , an−1, a

2
n〉 6= 0. Iteration

of this process yields (i).
If 〈a,x〉 6= 0 and 〈b,x〉 6= 0, then (5) implies

〈ab, ax1, . . . , axn, bx1, . . . , bxn, . . . , xixj , . . . 〉 6= 0.

Repeated application of Proposition 2.3.(i) yields 〈ab,x〉 6= 0. ⊣

2.6 Lemma. Proposition 2.5.(ii) is equivalent to (5).

Proof: Let x × y = 〈. . . , xiyj , . . . 〉, and t−i the sequence t with
ti removed. Suppose x 6= 0 and y 6= 0, and let z = 〈x,y〉. Then
〈x× y, z−i〉 6= 0 for all i. So by Proposition 2.5.(ii), 〈x× y, z−i,−j〉 6=
0 for all i < j. Applying Proposition 2.5.(ii) to this new collec-
tion by comparing all sequences that differ in one coordinate gives
〈x× y, z−i,−j,−k〉 6= 0 for all i < j < k. After sufficiently many appli-
cations of this operation we obtain x× y 6= 0. ⊣

2.7 Proposition. If R is a commutative ring with difference sat-
isfying one of the properties (1) or (5), then R[X] satisfies the same
property. If R satisfies both (4) and (5), then so does R[X]. If R is
an integral domain with difference, then so is R[X].
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Proof: The case for (1) is trivial.
Suppose R satisfies (5). Let A be an n × n matrix and b ∈ Rn

such that d = det A 6= 0 and b 6= 0. Let A′ be the adjoint of A,
that is, AA′ = A′A = dI. Then A′Ab = db 6= 0. From the strong
extensionality of A′ we obtain Ab 6= 0. So if det A 6= 0 and b 6= 0,
then Ab 6= 0. Let f, g ∈ R[X], h ∈ R[X]n be such that 〈f,h〉 6= 0 and
〈g,h〉 6= 0. Then f =

∑

i aiX
i and g =

∑

j bjX
j for certain ai, bj ∈ R.

Identify polynomials of degree at most p with vectors in Rp. Then
the coefficients of fg =

∑

k ckX
k form the vector Ab, where

A =





































a0 0 0 . . . 0
a1 a0 0 . . . 0
a2 a1 a0 . . . 0
...

...
...

. . .
...

am am−1 am−2 . . . a0
...

...
...

. . .
...

an an−1 an−2 . . . an−m

0 an an−1 . . . an−m+1

...
...

...
. . .

...
0 0 0 . . . an





































and

b =









b0
b1
...
bm









So we must show that 〈Ab,h〉 6= 0. Let Ai be the (m+ 1)× (m+ 1)
submatrix of A with the ai on the diagonal, and let di = det Ai.
Then di = am+1

i +
∑

j<i ajpj(a) for some pj . Now R satisfies (5),

so 〈am+1
0 , . . . , am+1

n ,h〉 6= 0. So by a finite induction on n, using
Proposition 2.3.(iv), d = 〈d0, . . . , dn,h〉 6= 0. Let A′

i be the ad-
joint of Ai. So A′

i〈ci, . . . , ci+m〉T = dib. There exists a linear map
F = 〈. . . , A′

iπi, . . . 〉:R
m+n+1 → R(m+1)(n+1) such that F is a strongly

extensional map satisfying FAb = 〈. . . , dibj , . . . 〉 and F0 = 0. So
〈FAb,h〉 6= 〈F0, 0〉. Hence 〈Ab,h〉 6= 0. Thus 〈fg,h〉 6= 0.

Suppose R satisfies (4) and (5). Let 〈f1, . . . , fm〉 6= 0 and g be
such that 〈f1g, . . . , fmg〉 = 0, for fi, g ∈ R[X]. We may identify g
and all fi with vectors in Rn+1 for some n. Then fig is a vector in
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R2n+1, and fig = Aib, where Ai is a (2n + 1) × (n + 1)-matrix as
above, and b is an (n + 1) × 1 vector associated with g. Let Aij be
the (n + 1) × (n + 1) submatrix of Ai with the jth coefficient on the
diagonal, and set dij = det Aij . Then 〈. . . , dij , . . . 〉 6= 0. Apply a
sequence of elementary maps Fi as above. Then 〈. . . , dijbk, . . . 〉 = 0.
So b = 0. Thus g = 0. ⊣

§3. Differences for All Powers

In §2 we were just able to extend the difference from a ring R
to the polynomial ring R[X] because R[X] ⊆

⋃

n∈N
Rn. Extending

the difference to the power series ring R[[X]] requires a substantial
extension of the definition of difference: define 6= on all powers SX

simultaneously rather than on finite powers Sn only. The definition
presented in this section follows the ‘finite’ version of §1.

A generalized (proper) difference 6= on a set S is defined on all pow-
ers SX simultaneously. It satisfies axiom schemas that are straight-
forward generalizations of §1.(1), §1.(2), and §1.(3).

We generalize axiom §1.(1) as follows: Let X = Y ∪ Z. If f is a
function with domain X, then we write fY and fZ for the functions
restricted to the subdomains Y and Z respectively. The generalization
of §1.(1) now reads: for all X,Y, Z such that X = Y ∪ Z, and all
f, g:X → S, we have:

(1) If f 6= g and fZ = gZ , then fY 6= gY

For a generalization of §1.(2) we must extend our definition of el-
ementary function. Let S be the set for which we define a difference
relation. For each function f :Y → X there is a corresponding map
f∗:SX → SY defined by f∗(g) = gf . The elementary maps of §1,
defined between finite powers of S, are of the form f∗:Sm → Sn,
where f is a function from n = {0, . . . , n− 1} to m = {0, . . . ,m− 1}.
More generally, elementary maps between SX and SY are defined as
the maps f∗, with f :Y → X. The generalization of §1.(2) now reads:
For all sets A and B, f :SA → SB an elementary map, x, y ∈ SA, and
t ∈ SB ,

(2) if fy 6= t, then 〈x, fx〉 6= 〈y, t〉,
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where 〈x, fx〉, 〈y, t〉 ∈ SA∐B .
Proper differences satisfy

(3) 〈〉 6= 〈〉 is false,

where 〈〉 is the unique element of S0 = 1.
We define nearness ∼ by f ∼ g if and only if ¬f 6= g. An inequiv-

alence is a proper difference such that for all sets X = Y ∪ Z and
f, g:X → S, if fY ∼ gY and fZ ∼ gZ , then f ∼ g.

A proper difference is an apartness if for all X and f, g:X → S, if
f 6= g, then f(x) 6= g(x) for some x ∈ X. Clearly, an apartness is an
inequivalence.

For each collection Λ of partial functions between powers of S,
E(Λ) is the smallest subcategory of partial maps between powers of
S that includes Λ and the elementary maps. The collection E = E(∅)
of elementary maps itself forms a subcategory. We define Λ to be a
collection of strongly extensional maps if all (partial) maps of E(Λ)
satisfy (2). As in §1, we easily shows that Λ is strongly extensional if
and only if for all f :SX ⇁ SY ∈ Λ, all Z, x, y ∈ SX , and z, w ∈ SZ ,

〈fx, z〉 6= 〈fy, w〉 implies 〈x, z〉 6= 〈y, w〉.

There is a canonical way to extend differences defined on the finite
powers Sn to differences on all powers SX . Let 6= be a difference on
all finite powers. For all X define 6= on SX by f 6= g if and only if
there is an n ∈ N and a map e: {1, . . . , n} → X such that fe 6= ge,
that is, 〈fe(1), . . . , fe(n)〉 6= 〈ge(1), . . . , ge(n)〉. We call this the infi-

nite extension of 6=. The extension preserves strong extensionality of
functions.

3.1 Proposition. The infinite extension of a difference relation
on the finite powers Sn is a difference. If the finite difference is proper,
an inequivalence or an apartness, then so is the infinite extension.

Proof: Let f, g:X → S be maps such that f 6= g, and suppose
X = Y ∪ Z such that fZ = gZ . There is a map e: {1, . . . , n} →
X such that fe 6= ge. Since 6= is a difference on the finite powers
Sn, we can remove all coordinates i for which e(i) ∈ Z, because for
them fe(i) = ge(i). So there is a subsequence generated by a map
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d: {1, . . . ,m} → Y for some m ≤ n such that fd 6= gd. Thus fY 6= gY .
So 6= satisfies (1).

Suppose fy 6= t for y ∈ SA, f = g∗:SA → SB elementary, and
t ∈ SB . So yge 6= te for some e: {1, . . . , n} → B. Then 〈x, fx〉〈ge, e〉 =
〈xge, fxe〉 6= 〈yge, te〉 = 〈y, t〉〈ge, e〉. Thus 〈x, fx〉 6= 〈y, t〉. So 6=
satisfies (2).

Clearly, if a finite difference is proper, then so is its infinite exten-
sion.

Suppose the finite difference is an inequivalence, and let X = Y ∪Z
be sets and f, g:X → S such that fY ∼ gY and fZ ∼ gZ . If f 6= g,
then fe 6= ge for some e:n → X. There are p, q such that p+ q = n,
ep: p → Y and eq: q → Z. Then fep ∼ gep and feq ∼ geq. So fe ∼ ge.
Contradiction. Thus f ∼ g.

The case for apartness is trivial. ⊣

If 6= is the denial inequality on the finite powers Sn, then its canon-
ical extension as defined above usually isn’t the denial inequality on
infinite powers SX .

Example: the denial inequality on the set N of natural numbers is
the well-known discrete inequality, while the infinite extension to NN

is the apartness relation defined by f 6= g if and only if f(n) 6= g(n)
for some n.

A map f :SX → SY is strongly extensional with respect to a differ-
ence if for all Z and v, w ∈ SZ , if 〈fx1, v〉 6= 〈fx2, w〉 in SY ∪Z , then
〈x1, v〉 6= 〈x2, w〉 in SX∪Z .

Obviously, if f :Sm → Sn is strongly extensional with respect to a
difference relation on the finite powers, then it is also strongly exten-
sional with respect to the infinite extension.

3.2 Proposition. Let R[[X]] be the power series ring over a com-
mutative ring R with difference. The difference on R[[X]] = RN is
the infinite extension of the difference on R. If R satisfies §2.(5), then
so does R[[X]].

Proof: Let f =
∑

i aiX
i, g =

∑

j bjX
j ∈ R[[X]], h ∈ R[[X]]n

be such that 〈f,h〉 6= 0 and 〈g,h〉 6= 0. Let fm =
∑

i≤m aiXi

and gn =
∑

j≤n bjX
j . By Proposition 2.7 there are m,n such that

〈fmgn,h〉 6= 0. Write fg =
∑

i ciX
i. We prove by induction on m+n

that 〈c0, . . . , cm+n,h〉 6= 0. If m+ n = 0, then 〈c0,h〉 6= 0. Induction
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step: If 〈fmgn,h〉 6= 0, then 〈c0, . . . , cm+n, . . . , aibj , . . . ,h〉 6= 0, where
i, j are all pairs such that i + j ≤ m + n and i < m or j < n. So
〈c0, . . . , cm+n, fm−1, gn−1,h〉 6= 0, where f−1 = g−1 = 0. And thus by
induction 〈c0, . . . , cm+n,h〉 6= 0. ⊣

In general, if R is an integral domain with difference, then R[[X]],
with the infinite extension as difference relation, may not satisfy
§2.(4). Let R = Z[S,Z0, Z1, Z2, . . . ]/J , where J is the ideal gener-
ated by SZ0 and SZi+1 +Zi, for all i. Define x 6= y if and only if the
ideal

∑

i(xi − yi)R equals R. Then R is an integral domain with dif-
ference. Let f, g ∈ R[[X]] be defined by f = S+X and g =

∑

i ZiX
i.

Then f 6= 0, fg = 0, but g is not identical to 0. So R[[X]] does not
satisfy §2.(4).

§4. Appendix. A topos model

We construct a topos E whose natural number object N has a
detachable subset X such that both X and N \ X are not infinite,
where a subset Y ⊆ N is infinite if for all m there exists n > m such
that n ∈ Y . We hasten to add that the construction of the topos
model itself uses principles from classical logic and set theory.

All languages that we consider are for a higher-order logic as de-
scribed in [5] or [9], with additional type constants and function con-
stants. We construct a sequence of higher order languages Li, theories
{Ti | i ∈ N} for the languages Li, and topos models {Ei | i ∈ N} for
the theories Ti.

Let L0 be the language with extra type constant N , extra function
symbol s:N → N and extra constant symbol 0 of type N . Let T0

be the theory of higher order logic for L0 with the Axiom Schema of
Choice (epimorphisms split), implying excluded middle [4], and the
additional schema: (N, s, 0) is a natural number object in L0 ([5] or
[7] or [9]). Obviously, T0 has a topos model contained in the category
of sets S. Define expλ for all ordinals λ by exp0 = ℵ0, expα+1 = 2expα ,
and expλ =

⋃

α<λ expα for limit ordinals λ. Set E0 = Vλ with λ a
regular cardinal bigger than expω, where Vλ is an initial segment of
the cumulative hierarchy (see [3, p. 168] or [8, p. 71]).

Suppose Li and Ti have been defined and a model Ei constructed.
Define Li+1 as the extension of Li obtained by adding constant sym-
bols for all elements of the natural number object Ni ∈ |Ei|, plus
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one more symbol ci+1. Define Ti+1 as the extension of Ti by adding
all properties for the constants satisfied by the corresponding ele-
ments of Ni in Ei, plus the axiom schema ci+1 > n for all constants

n of Ni. Set Ei+1 = ENi

i /F , where F is an ultrafilter on Ni that
exists and is free in Ei. The category Ei+1 is a subcategory of Ei
with embedding σi: Ei+1 → Ei, and is a topos with natural num-

ber object Ni+1 = NNi

i /F . For ci+1 choose the diagonal element
(id :Ni → Ni)/F . Then Ei+1 is a model of Ti+1.

Consider the sequence of categories

. . .
σ2−→ E2

σ1−→ E1
σ0−→ E0,

where the σi are the inclusion functors. Note that the σi are left
exact. We use the glueing construction as described in [7, p. 109]
to construct a new topos. Let E =

∏

i Ei. Let G = (G, ε, δ) be the
comonad on E defined by

G(
∏

i

Ai) =
∏

i

∏

j≥i

Aj ;

ε∏
i
Ai

=
∏

i

π1:G(
∏

i

Ai) →
∏

i

Ai; and

δ∏
i
Ai

=
∏

i

∏

j≥i

∏

k≥j

πk:G(A) → G2(A).

The functor G is left exact. So by [7, Theorem 2.32] the category EG
of coalgebras is a topos.

The objects of EG are most easily described as sequences

A = (A0
a0−→ A1

a1−→ A2
a2−→ . . . ),

where Ai ∈ |Ei| and ai is a morphism of Ei. Morphisms f :A → B con-
sist of sequences f = (f0, f1, f2, . . . ), where the fi:Ai → Bi are such
that bi+1fi = fi+1ai. We easily see that N = (N0, N1, N2, . . . ) is the
natural number object of EG. LetX = (X0, X1, X2, . . . ) be the subob-
ject of N defined by X2i = {n ∈ N2i | c2j−1 ≤ n ≤ c2j for some j ≤ i}
and X2i+1 = {n ∈ N2i+1 | c2j−1 ≤ n ≤ c2j for some j ≤ i or c2i+1 ≤
n}. We easily verify:

4.1 Theorem. X is a detachable subobject of N such that neither
X nor N \X is infinite. ⊣
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