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0. INTRODUCTION

In [Fountain 1991] John Fountain shows, among other things, that if R is a discrete
valuation ring or the ring of integers, then all n x n matrices of rank less than n are
products of idempotent matrices. We generalize this result by characterizing those rings
among the Hermite domains that satisfy this same result: All n x n matrices of rank less
than n over a Hermite domain are products of idempotents if and only if all invertible
matrices are products of elementary matrices. Since we work over a larger class of rings,
many results of [Fountain 1991] have to be redone. Fountain’s methods are an important
guide to us on how to proceed.

1. PRELIMINARIES

In the Preliminaries we state some basic facts of ring theory on behalf of experts in
semigroup theory, and some basic facts of semigroup theory on behalf of experts in ring
theory.

Recall that an integral domain is a ring R with unit such that » # 0 and s # 0 implies
rs # 0, for all r, s € R. For each left submodule N of a module R"™, define the pure closure
N = {m | rm € N for some nonzero r € R}. Note that direct summands are pure, but
in general pure closures need not even be submodules. A Hermite domain is an integral
domain R such that for all matrices o there are invertible square matrices o and p such
that both oca and ap are upper triangular matrices. This is equivalent to: For all integers
n > 0, each finitely generated left submodule N C R™ has a unique finite rank rk NV, and
its pure closure N is a direct summand of R” and has equal finite rank.

Clearly, for each m € R™ there exist bases fi,...,f, and d € R such that m = df;. It
is well-known that if M C N C R™ are finitely generated left modules, then rk M < rk N,
and M is a direct summand of N; left invertible and right invertible square matrices are
invertible; and for each m xn matrix « there are square matrices o and p such that o’s rows
are linearly independent and p is invertible, and a diagonal matrix ¢, such that cap = 9. If
o can be chosen invertible, then we call @ diagonalizable. The number of nonzero elements
of § is unique, and is called the rank of «, written rk a. This number is equal to the rank
of the left module generated by the row space of a.
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Examples of Hermite domains include division rings and principal ideal domains. More
generally, if R is an integral domain such that all matrices are diagonalizable, then R is
Hermite.

Recall that an elementary matriz is an invertible matrix that is identical to the identity
except for one entry. Permutation matrices are products of elementary matrices. For
Euclidean domains all invertible matrices are products of elementary matrices.

1.1 Proposition. All invertible matrices over a Hermite domain are products of elemen-
tary matrices if and only if its invertible 2 X 2 matrices are products of elementary matrices.

PrOOF: Immediate from [Kaplansky 1949, Theorem 7.1]. -

For a semigroup S, let S be obtained by adding an identity (if S already has an
identity, we may set S! = S). Each a € S defines a transformation p, € T(S!) by right
multiplication, and a transformation \, € T*(S') by left multiplication. Define equivalence
relations R* and £* on S by aR*b if and only if p, and p, introduce the same equivalence
relation on their domains (za = ya if and only if zb = yb), and aL*b if and only if A\,
and )\, introduce the same equivalence relation on their domains. Let H* = R* N L* and
D* =R*V L*, the meet and join equivalence relations of R* and L*.

1.2 Lemma. For S = End(R"), R a Hermite domain, we have

aR* <= Kera =Ker and

al’f <= Ima =Im§.

PROOF: The case for R* versus Ker is trivial.
The case for L* versus Im: oy = 0 if and only if Im o C Ker ~y if and only if Im o C Ker 7.
Since Im « is a direct summand, there is an (idempotent) v with Kery = Ima.

Note that Ker « is a (finitely generated) direct summand, for if z;q, ...,z is a basis
of Im «, then Keraa® Rx1 ® --- ® Rx,, = R".

For each pair of finitely generated pure submodules N, P C R™ over a Hermite domain
R such that rk N +rk P = n, there exist o € End(R") with Kera = N and Ima = P. All
H* classes are uniquely determined by such pairs. For each such pair N, P, we denote by
(N : P) the H*-class of a corresponding a.

An element a of a semigroup is (von Neumann) regular if there exist b such that a = aba.
If R is a Hermite domain, then o € End(R") is regular exactly when Im « is pure, for if
afa = a and za = ry, then r(yBa) = ry. Moreover, each equivalence class H* of End(R")
contains a regular element.

1.3 Lemma. Let R be a Hermite domain, and let €1, . ..,e, € End (R™) be of rank r. For
allk>j>1>1, define oj; =€jej_1...€5, and oy = oy i. If aq is reqular and of rank r,
then so is o ; for all j > 1.

PrOOF: If j* > j > i >4, then rkay  <rtka;,; <r. Sorka;,; =r for all j > i. Now
o ; is regular if and only if Im o ; is pure. So it suffices to show that all «; are regular.
We complete the proof by induction on ¢. Suppose that «; is regular. Then Im «; = Im e,
and the module Im a4 has a free basis x1,...,X, such that x;¢;,...,x,¢; is a basis for
Ime;. Let x,41,...,%X, be a basis for Kere;. Then x1,...,x, is a free basis for R™. Thus
Im ;1 is a direct summand, hence pure.
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Green’s equivalence relations R and £ on a semigroup S are defined by
aRb < aS' =bS' and
alb <= S'a = S"b.

So aRb if and only if there are z,y € S! such that ax = b and by = a (similarly for £).
Let D = RV L. Then D is an equivalence relation such that aDb if and only if there
are x1,y1,%2,y2 € St such that z1ay; = b and z2x10 = ay1y2 = a. So D = LR = RL.
Obviously, if aRb, then aR*b (similarly, £ C £*). If a and b are regular, then the reverse
holds too: If axa = a and byb = b, and aR*b, then axb = b and bya = a (similarly, £L* = L
with restriction to regular elements).

A semigroup S is abundant if each R*-class and each L*-class contains an idempotent.

1.4 Lemma. IfS is a semigroup in which each H*-class contains a regular element, then
D* =R*L* = L*R*, and S is abundant.

PRrROOF: [Fountain 1991]. -

Lemma 1.4 applies to End(R"™), R a Hermite domain: So it is abundant, and D* =
R*L* = L*R*. For «, 5 € End(R"™) we have

aD*p < rka =1k .

For if aD*, then aR*vL* /3 for some v with Kera = Kery and Im~y = Im 3. So rkaw =
rky = rk 8. Conversely, if rk o = 1k 3, then rk(Ker a) + rk(Im 3) = n. So there exist 7 in
the H*-class (Ker o : Im /3) such that aR*yL*B.

For each a € S, let ‘H} be the H*-class containing a. Similarly define £, R}, L,,
and R,. If f is idempotent and xL* f, then xf = x because ff = f1. Similarly, if f is
idempotent and xR* f, then fx = x. If f is idempotent and xLf, then f = z;x for some
x, and zx1x = x. So x is regular. Similarly, if f is idempotent and 2R f, then f = xxo,

and zxoxr = x. The following essentially is a special case of [Fountain 1982, Proposition
1.13].

1.5 Proposition. Let S be a semigroup in which every H*-class contains a reqular el-
ement. Let e,c,d,a € S be such that e is idempotent, c,d are reqular, eL*cR*a, and
eR*dL*a. Then the function 0: H: — H} given by b0 = cbd is a bijection.

PrROOF: We may assume that a is regular. So eLcRa, and eRdLa.

Suppose b, b’ € S are such that cbd = cb'd. Then ebe = eb'e. If b,/ € H, then b =1V'.
Thus 0: H; — S is one-to-one.

Note that H} = L "R = L;NR}.

Let z € H}. We wish to show that cxdL*d. Obviously, if dp = dg, then cxdp = czdq.
Conversely, suppose cxdp = cxdq. From cL*e it follows that exdp = exdq, so, because
er = x, xdp = xdq. Now zL*e, so edp = edq, so, because ed = d, dp = dq. Similarly,
cxdR*c. Thus cxd € L3 NR}, and thus Im 6 C H,.

Let y € £};. By Lemma 1.4 there is an idempotent f such that yL*dLf. So y = yf,
d =df,and f = d'd for some d’. Soy = yd'd. Similarly, if y € R, then y = ¢’y for some ¢/
such that g = ¢c’ is idempotent, and yR*c¢Rg. So if y € H}, then y = cc'yd'd = cec'yd'ed.
Set x = ecyd’e. We wish to show that xL*e. Obviously, if ep = eq, then xp = zq.
Conversely, suppose xp = xq. Since eL*c we have cc'yd'ep = cc'yd'eq. Since cd'y = gy =y
this implies yd'ep = yd'eq. Now yL*d, so dd'ep = dd'eq. Now e = dd; for some dy, so
dd'dd,p = dd'ddy1q. So dfdip = dfdyq, so ddip = dd1q. Thus ep = eq. Similarly, zR*e. So
x € H}, and thus 6 maps onto H.
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1.6 Lemma. If one element of an D-class is regular, then so are all elements of that
D-class.

Proor: [Clifford, Preston 1961, Theorem 2.11].

1.7 Lemma. Let a,b be elements of a semigroup S. Then the following are equivalent:

(1) abe R, NLy.
(2) Lo MRy contains an idempotent.

If (1) or (2) holds, then aDb, and a and b are regular.
Proor: [Clifford, Preston 1961, Theorem 2.17].

2. ProDUCTS OF IDEMPOTENTS

Define E);_,. to be the set of idempotents of End(R") of rank r, and let E" = J,., E7,
the set of all non-identity idempotents. We write E,, instead of £}, if confusion isn’t likely.
For subsets X of a semigroup S, let (X) denote the subsemigroup generated by X.

Let D} C End(R"™) denote the D*-class of endomorphisms of rank r, and let K(n,r) be
the semigroup ideal of End(R™) of matrices of rank at most . So K(n,r) = J,, Di.

A pair of finitely generated pure submodules A, B C M is called complementary if
A® B = M. If R is a Hermite domain and A, B C R"™ are complementary, then the
projection on B with kernel A is an idempotent element of the H*-class (A : B). In fact,
this class contains an idempotent if and only if A and B form a complementary pair. A pair
of finitely generated pure submodules A, B C M is called weakly complementary if there is
a finite sequence of finitely generated pure submodules Cy,...,Cy, D1,..., D C M with
A = Ci, B = Dy, and such that (C;, D;) and (Cj41, D;) are complementary pairs for all
1<i<kand1l<j<k-—1. Obviously weak complementarity is the smallest symmetric
relation containing complementarity such that if (A, B), (C, B), and (C, D) are related,
then so is (4, D). A module R"™ is weakly complementary if all pairs of pure submodules
A, B C R" such that tk A=n—1,rk B =1, and AN B = 0, are weakly complementary.

2.1 Lemma. Let R be a Hermite domain, and let A, B be pure submodules of R"™ of ranks
r and n — r respectively. Then (A, B) is weakly complementary if and only if the H*-class
(B:A) of End(R™) contains a regular element that is a product of idempotents or rank r.

PROOF: Suppose (A, B) is a weakly complementary pair. There are submodules
Ci,...,Cx,Dq,...,D, CR"

with A = Cj, B = Dy, and all pairs (C;, D;) and (Cjy;1,D;) are complementary. So
rkC; = r and tk D; = n — r, for all i. So each H*-class (D; : C;) contains an idempotent
e; € D}, and each H*-class (D; : Cj41) contains an idempotent n; € D;. For all j <k —1
we have €;Rn;Le;41, so by Lemma 1.7,

€j+1E&5 eER ﬂﬁsj.

€j+1
Let o; = €p-...-€;. Then o;Raj41, and if xLej11, then xze;Le;. So by induction we have
Q; € ng N Egj

and, by Lemma 1.6, all o; are regular. Hence Ker o; = Kere, = Dy, and Ima; = Ime; =
C;. So aq is a regular element of (B : A) that is a product of idempotents of rank r.
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Conversely, let o be an element in the H*-class (B : A) that is regular and a product
€k + ... &1 of idempotents of rank r. Set C; = Imeg; and D; = Kereg;. Then A = C},
B = Dy, and the pairs (C;, D;) are complementary. By Lemma 1.3 €;41¢; is regular and
of rank 7, so Ime;16; = Ime;. The submodules Kere;;; C Kere;11¢; are also pure and
of the same rank, so Kere; 1 = Kere;116;. So €,41Re;11€;Le;, and thus, by Lemma 1.7,
there is an idempotent

771 e £€i+1 m RE'L'
So the pairs (C;41, D;) are complementary. -

2.2 Corollary. Let R be a Hermite domain. If each H*-class contained in D} _; C
End(R"™) contains a regular element that is a product of idempotents, then R™ is weakly

complementary.

PRrROOF: If a € D},_, is a product of idempotents, then it is a product of idempotents
of rank n — 1. H

2.3 Lemma. Let R be a Hermite domain. If « = € ...e1 is a product of idempotents of
End(R"™), and D is a direct summand such that both D and Da have rank r, then there is
a product B = ng ...n1 of idempotents of rank r such that Ker § O Ker o and d = da for
alld € D.

ProOOF: We complete the proof by induction on k. The case for £ = 1 is easy, so
assume that k& > 0, and that the result is true for kK — 1. Let o/ = e;_1...e1, and let
dy,...,d, be a basis for D. Then d;eg,...,d.c; generates a submodule of rank r with
pure closure D', and D’a’ has rank r. By induction there is a product 8’ = ni_1...m1 of
idempotents of rank r such that Ker 8’ D Kera’ and d’8’ = d’a’ for all d’ € D’. There
is a direct summand K D (Ker '), ! = Ker(ex3’) such that D’ @ K = R". Choose for
M. the projection on D’ with kernel K, and set 8 = np3’. So Ker 8 O Kera. For all x,
XNk = (X — Xef + X))k = XERNE. SO N = €Nk, and df = da for alld € D.

2.4 Lemma. Let R be a Hermite domain, and let o € End(R"™) be of rank r < n — 2.
Then o = B for some 3,7y € End(R"™) of rank r + 1 such that 7 is idempotent. If « is an
tdempotent, then we can choose (B to be idempotent too.

PROOF: There is a basis {x1,...,%,} of R" such that {x;,...,X,} is a basis of Im a.
The sequence (xjq, . ..,X,q) generates Im o, so contains a subsequence Y of length r that
is linearly independent. Let j be such that x;o is not selected for the subsequence Y. If
« is idempotent, then we may assume Y to be the first r elements, and j = r + 1. Define
B by x;8 = x,41, and x;8 = x;a for 7 # j. Define v by x;7 =01if ¢ > r + 3, x, 117 = X0,
and x;v = x; for the remaining ¢. Clearly, S and v have rank r + 1, o = v, and ~y is an
idempotent such that Im+ is the pure submodule generated by {x1,...,X,,X,42}. If o is
idempotent, then so is 3. -

Lemma 2.4 implies that D} generates K (n,r), for all » < n. Combining Lemmas 2.3
and 2.4, we get:

2.5 Corollary. Let R be a Hermite domain. Then (E) N K(n,r) = (Ep—) for 1 <r <
n— 1. In particular, (E) = (E7).
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2.6 Lemma. Let R be a Hermite domain, and let H: be the H*-class of an idempotent ¢
of rank r in End(R"™). If every H*-class of D} contains a reqular element that is a product
of idempotents of rank r, then K(n,r) = (H:U E,_,).

PROOF: Let o € Dj:. Then the H*-classes LZNR}, and RINL}, are contained in D}, and
contain regular elements that are products of idempotents, say v and §. By Proposition
1.5 the map 0: H: — H},, defined by 86 = 34, is a bijection. Since vy and J are products
of idempotents of rank r, this implies that o € (H} U E},_,). So H} U E,,_, generates D,
and thus K(n,r). 4

2.7 Lemma. Let R be a Hermite domain. Then for alln > 2 and o € End(R™) of rank
1, if o is H* -equivalent to an idempotent, then there are idempotents e, € End(R"™) such
that o = en.

PROOF: Let n > 2, and let @ € End(R™) have rank 1. There is a basis y1,...,Yn_1,X
of R™ such that yq,...,y,_1 is a basis of Ker «, and xa = ax for some a € R. If a = 1,
then « is idempotent. In general, define €, € End(R") by:

xe =x+ (a —1)y,—1, and y;e = 0 for all y;.

XN =yn_1n =%, and y;n =0 for all i <n — 1.

Then € and 7 are idempotents, and en = «.

2.8 Proposition. Let R be a Hermite domain. If for all m < n every H*-class in
D1 € End(R™) contains a regular element that is a product of idempotents of End(R™),
then K(n,n — 1) = (ET).

PrOOF: By induction on n. The case for n = 2 follows from Lemmas 2.6 and 2.7.
Suppose, then, that n > 3, and that the result is true for n — 1. Let x1,...,x,_1,y be
a basis for R"™, and let A and B be the subspaces generated by x1,...,x,_1 and y — x3
respectively. Then A & B = R™, so the H*-class (B : A) contains an idempotent. By
Lemma 2.6 it suffices to show that all elements in (B : A) are products of idempotents (of
rank n —1). Let o € (B : A). Then x;a = y«, and Im « is generated by the sequence of
linearly independent elements xa,...,X,_1a. Let § € End(4) = End(R"!) be defined
by x18 = x2a, and x;8 = x;« for all i« > 2. Then k8 = n — 2, so, by induction,
B =¢1-... ¢ for some idempotents ¢; € End(A) of rank n — 2. Extend each ¢; to an
idempotent ¢, € End(R"™) of rank n — 1 by putting ye, = y. Now define idempotents ¢, n
of rank n — 1 by putting yp = x1¢0 =y, and x;0 = x; for all ¢ > 2, and by putting
yn = xja, and x;n7 = x; for all i. One easily verifies that o = e} - ... €in. So every
element of (B : A), hence every element of K(n,n—1), is a product of idempotents of rank
n—1. -

2.9 Theorem. The following conditions are equivalent for a Hermite domain R:

1) K(m,m—1)=(E™) for allm < n;

2) K(m,m—1) = (E7") for allm <n;

3) K(m,r)=(E"_) forallm<mnand1<r<m-1;

4) For all m < n, every H*-class contained in D}, _; C End(R™) contains a regular
element that is a product of idempotents.

(5) For all m < n the module R™ is weakly complementary, that is, all pairs of pure
submodules A, B C R™ such that rk A=m —1, vk B=1, and AN B = 0, are
weakly complementary.

(6) Every invertible 2 x 2 matrix over R is a product of elementary matrices.

(7) Ewvery invertible matriz over R is a product of elementary matrices.
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PROOF: The equivalence of (1), (2), and (3) follows from Corollary 2.5. Clearly, (2)
implies (4), and (5) follows from (4) by Corollary 2.2. Assume (5), and let

A <p q)
r s
be an invertible matrix. If one of the coefficients is invertible or equal to 0, then A is a
product of elementary matrices. So we may assume that p is nonzero and not invertible.
Then A = R(p,q) and B = R(0, 1) are pure submodules of R? of rank 1 such that AN B =
0. So there are vectors (c1,1,¢1.2),--.,(Ck,1,Ck,2) and (dy1,d1,2),. .., (dk1,dk2) such that
(p,q) = (c1,1,¢1,2) and (0,1) = (dg,1,dg 2), and

C; C; Cj C4
E’i — 7,1 1,2 and FJ — 7+1,1 7+1,2
di,l di,2 dj,l dj,2

are invertible matrices, for all 1 < ¢ < kand 1 < 57 < k—1. Set Fy = A. There are
matrices Py,...,P,—1 and Q1,...,Qr—1 such that E; = P F; and F; = Q;E;4; for all
1<i<k—-1land 0<j<k-—1. All P, and @, as well as I}, have at least one 0 entry,
hence are products of elementary matrices. So A is a product of elementary matrices.

The equivalence of (6) and (7) follows from Proposition 1.1. Assume (7). We wish to
establish (2). Let m > 0, and let (B : A) be an H*-class of D}, _; C End(R™). By Lemma
2.1 and Proposition 2.8 it suffices to show that A and B are weakly complementary. A and
B are pure submodules of R™ with bases ai,...,a,_1 and b respectively. We may assume
that b = (0,...,0,1). There is an invertible matrix M such that (ai,...,a,_1)7 forms
the upper (m — 1) X m submatrix of M. Then M is a product Ej...E; of elementary
matrices. Let M; = E;...E;. Write M; = (¢ci1,...,¢in_1,d;)T. Let C; and D; be the
submodules generated by ¢; 1, ..., ¢; ,—1 and d; respectively. Then (C;, D;) and (Cj41, D;)
are complementary pairs for all 0 < i < kand 0 < j <k—1,and B = Dy and A = C}.
So A and B are weakly complementary.

Examples of Hermite domains satisfying (6) include division rings and Euclidean do-
mains, so Theorem 2.9 generalizes [Fountain 1991]. Since (6) doesn’t depend on n, we may
conclude from Theorem 2.9 that if R is a Hermite domain such that K(2,1) = (E?), then
K(n,n—1) = (E™) for all n > 2.
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