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0. Introduction

In [Fountain 1991] John Fountain shows, among other things, that if R is a discrete
valuation ring or the ring of integers, then all n × n matrices of rank less than n are
products of idempotent matrices. We generalize this result by characterizing those rings
among the Hermite domains that satisfy this same result: All n× n matrices of rank less
than n over a Hermite domain are products of idempotents if and only if all invertible
matrices are products of elementary matrices. Since we work over a larger class of rings,
many results of [Fountain 1991] have to be redone. Fountain’s methods are an important
guide to us on how to proceed.

1. Preliminaries

In the Preliminaries we state some basic facts of ring theory on behalf of experts in
semigroup theory, and some basic facts of semigroup theory on behalf of experts in ring
theory.

Recall that an integral domain is a ring R with unit such that r 6= 0 and s 6= 0 implies
rs 6= 0, for all r, s ∈ R. For each left submodule N of a module Rn, define the pure closure

N = {m | rm ∈ N for some nonzero r ∈ R}. Note that direct summands are pure, but
in general pure closures need not even be submodules. A Hermite domain is an integral
domain R such that for all matrices α there are invertible square matrices σ and ρ such
that both σα and αρ are upper triangular matrices. This is equivalent to: For all integers
n > 0, each finitely generated left submodule N ⊆ Rn has a unique finite rank rkN , and
its pure closure N is a direct summand of Rn and has equal finite rank.

Clearly, for each m ∈ Rn there exist bases f1, . . . , fn and d ∈ R such that m = df1. It
is well-known that if M ⊆ N ⊆ Rn are finitely generated left modules, then rkM ≤ rkN ,
and M is a direct summand of N ; left invertible and right invertible square matrices are
invertible; and for each m×n matrix α there are square matrices σ and ρ such that σ’s rows
are linearly independent and ρ is invertible, and a diagonal matrix δ, such that σαρ = δ. If
σ can be chosen invertible, then we call α diagonalizable. The number of nonzero elements
of δ is unique, and is called the rank of α, written rkα. This number is equal to the rank
of the left module generated by the row space of α.
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Examples of Hermite domains include division rings and principal ideal domains. More
generally, if R is an integral domain such that all matrices are diagonalizable, then R is
Hermite.

Recall that an elementary matrix is an invertible matrix that is identical to the identity
except for one entry. Permutation matrices are products of elementary matrices. For
Euclidean domains all invertible matrices are products of elementary matrices.

1.1 Proposition. All invertible matrices over a Hermite domain are products of elemen-

tary matrices if and only if its invertible 2×2 matrices are products of elementary matrices.

Proof: Immediate from [Kaplansky 1949, Theorem 7.1]. ⊣

For a semigroup S, let S1 be obtained by adding an identity (if S already has an
identity, we may set S1 = S). Each a ∈ S defines a transformation ρa ∈ T (S1) by right
multiplication, and a transformation λa ∈ T ∗(S1) by left multiplication. Define equivalence
relations R∗ and L∗ on S by aR∗b if and only if ρa and ρb introduce the same equivalence
relation on their domains (xa = ya if and only if xb = yb), and aL∗b if and only if λa

and λb introduce the same equivalence relation on their domains. Let H∗ = R∗ ∩ L∗ and
D∗ = R∗ ∨ L∗, the meet and join equivalence relations of R∗ and L∗.

1.2 Lemma. For S = End(Rn), R a Hermite domain, we have

αR∗β ⇐⇒ Kerα = Kerβ and

αL∗β ⇐⇒ Imα = Imβ.

Proof: The case for R∗ versus Ker is trivial.
The case for L∗ versus Im: αγ = 0 if and only if Imα ⊆ Ker γ if and only if Imα ⊆ Ker γ.

Since Imα is a direct summand, there is an (idempotent) γ with Ker γ = Imα. ⊣

Note that Kerα is a (finitely generated) direct summand, for if x1α, . . . , xmα is a basis
of Imα, then Kerα⊕Rx1 ⊕ · · · ⊕Rxm = Rn.

For each pair of finitely generated pure submodules N,P ⊆ Rn over a Hermite domain
R such that rkN +rkP = n, there exist α ∈ End(Rn) with Kerα = N and Imα = P . All
H∗ classes are uniquely determined by such pairs. For each such pair N,P , we denote by
(N : P ) the H∗-class of a corresponding α.

An element a of a semigroup is (von Neumann) regular if there exist b such that a = aba.
If R is a Hermite domain, then α ∈ End(Rn) is regular exactly when Imα is pure, for if
αβα = α and xα = ry, then r(yβα) = ry. Moreover, each equivalence class H∗ of End(Rn)
contains a regular element.

1.3 Lemma. Let R be a Hermite domain, and let ε1, . . . , εk ∈ End (Rn) be of rank r. For

all k ≥ j ≥ i ≥ 1, define αj,i = εjεj−1 . . . εi, and αi = αk,i. If α1 is regular and of rank r,

then so is αj,i for all j ≥ i.

Proof: If j′ ≥ j ≥ i ≥ i′, then rkαj′,i′ ≤ rkαj,i ≤ r. So rkαj,i = r for all j ≥ i. Now
αj,i is regular if and only if Imαj,i is pure. So it suffices to show that all αi are regular.
We complete the proof by induction on i. Suppose that αi is regular. Then Imαi = Im εi,
and the module Imαi+1 has a free basis x1, . . . ,xr such that x1εi, . . . ,xrεi is a basis for
Im εi. Let xr+1, . . . ,xn be a basis for Ker εi. Then x1, . . . ,xn is a free basis for Rn. Thus
Imαi+1 is a direct summand, hence pure. ⊣



PRODUCTS OF IDEMPOTENT MATRICES 3

Green’s equivalence relations R and L on a semigroup S are defined by

aRb ⇐⇒ aS1 = bS1 and

aLb ⇐⇒ S1a = S1b.

So aRb if and only if there are x, y ∈ S1 such that ax = b and by = a (similarly for L).
Let D = R ∨ L. Then D is an equivalence relation such that aDb if and only if there
are x1, y1, x2, y2 ∈ S1 such that x1ay1 = b and x2x1a = ay1y2 = a. So D = LR = RL.
Obviously, if aRb, then aR∗b (similarly, L ⊆ L∗). If a and b are regular, then the reverse
holds too: If axa = a and byb = b, and aR∗b, then axb = b and bya = a (similarly, L∗ = L
with restriction to regular elements).

A semigroup S is abundant if each R∗-class and each L∗-class contains an idempotent.

1.4 Lemma. If S is a semigroup in which each H∗-class contains a regular element, then

D∗ = R∗L∗ = L∗R∗, and S is abundant.

Proof: [Fountain 1991]. ⊣

Lemma 1.4 applies to End(Rn), R a Hermite domain: So it is abundant, and D∗ =
R∗L∗ = L∗R∗. For α, β ∈ End(Rn) we have

αD∗β ⇐⇒ rkα = rkβ.

For if αD∗β, then αR∗γL∗β for some γ with Kerα = Ker γ and Im γ = Imβ. So rkα =
rk γ = rkβ. Conversely, if rkα = rkβ, then rk(Kerα) + rk(Imβ) = n. So there exist γ in
the H∗-class (Kerα : Imβ) such that αR∗γL∗β.

For each a ∈ S, let H∗
a be the H∗-class containing a. Similarly define L∗

a, R∗
a, La,

and Ra. If f is idempotent and xL∗f , then xf = x because ff = f1. Similarly, if f is
idempotent and xR∗f , then fx = x. If f is idempotent and xLf , then f = x1x for some
x, and xx1x = x. So x is regular. Similarly, if f is idempotent and xRf , then f = xx2,
and xx2x = x. The following essentially is a special case of [Fountain 1982, Proposition
1.13].

1.5 Proposition. Let S be a semigroup in which every H∗-class contains a regular el-

ement. Let e, c, d, a ∈ S be such that e is idempotent, c, d are regular, eL∗cR∗a, and

eR∗dL∗a. Then the function θ:H∗
e → H∗

a given by bθ = cbd is a bijection.

Proof: We may assume that a is regular. So eLcRa, and eRdLa.
Suppose b, b′ ∈ S are such that cbd = cb′d. Then ebe = eb′e. If b, b′ ∈ H∗

e , then b = b′.
Thus θ:H∗

e → S is one-to-one.
Note that H∗

a = L∗
a ∩R∗

a = L∗
d ∩R∗

c .
Let x ∈ H∗

e . We wish to show that cxdL∗d. Obviously, if dp = dq, then cxdp = cxdq.
Conversely, suppose cxdp = cxdq. From cL∗e it follows that exdp = exdq, so, because
ex = x, xdp = xdq. Now xL∗e, so edp = edq, so, because ed = d, dp = dq. Similarly,
cxdR∗c. Thus cxd ∈ L∗

d ∩R∗
c , and thus Im θ ⊆ H∗

a.
Let y ∈ L∗

d. By Lemma 1.4 there is an idempotent f such that yL∗dLf . So y = yf ,
d = df , and f = d′d for some d′. So y = yd′d. Similarly, if y ∈ R∗

c , then y = cc′y for some c′

such that g = cc′ is idempotent, and yR∗cRg. So if y ∈ H∗
a, then y = cc′yd′d = cec′yd′ed.

Set x = ec′yd′e. We wish to show that xL∗e. Obviously, if ep = eq, then xp = xq.
Conversely, suppose xp = xq. Since eL∗c we have cc′yd′ep = cc′yd′eq. Since cc′y = gy = y

this implies yd′ep = yd′eq. Now yL∗d, so dd′ep = dd′eq. Now e = dd1 for some d1, so
dd′dd1p = dd′dd1q. So dfd1p = dfd1q, so dd1p = dd1q. Thus ep = eq. Similarly, xR∗e. So
x ∈ H∗

e , and thus θ maps onto H∗
a. ⊣
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1.6 Lemma. If one element of an D-class is regular, then so are all elements of that

D-class.

Proof: [Clifford, Preston 1961, Theorem 2.11]. ⊣

1.7 Lemma. Let a, b be elements of a semigroup S. Then the following are equivalent:

(1) ab ∈ Ra ∩ Lb.

(2) La ∩Rb contains an idempotent.

If (1) or (2) holds, then aDb, and a and b are regular.

Proof: [Clifford, Preston 1961, Theorem 2.17]. ⊣

2. Products of Idempotents

Define En
n−r to be the set of idempotents of End(Rn) of rank r, and let En =

⋃

s>0
En

s ,
the set of all non-identity idempotents. We write Em instead of En

m if confusion isn’t likely.
For subsets X of a semigroup S, let 〈X〉 denote the subsemigroup generated by X.

Let D∗
r ⊆ End(Rn) denote the D∗-class of endomorphisms of rank r, and let K(n, r) be

the semigroup ideal of End(Rn) of matrices of rank at most r. So K(n, r) =
⋃

s≤r D
∗
s .

A pair of finitely generated pure submodules A,B ⊆ M is called complementary if
A ⊕ B = M . If R is a Hermite domain and A,B ⊆ Rn are complementary, then the
projection on B with kernel A is an idempotent element of the H∗-class (A : B). In fact,
this class contains an idempotent if and only if A and B form a complementary pair. A pair
of finitely generated pure submodules A,B ⊆ M is called weakly complementary if there is
a finite sequence of finitely generated pure submodules C1, . . . , Ck, D1, . . . , Dk ⊆ M with
A = C1, B = Dk, and such that (Ci, Di) and (Cj+1, Dj) are complementary pairs for all
1 ≤ i ≤ k and 1 ≤ j ≤ k − 1. Obviously weak complementarity is the smallest symmetric
relation containing complementarity such that if (A,B), (C,B), and (C,D) are related,
then so is (A,D). A module Rn is weakly complementary if all pairs of pure submodules
A,B ⊆ Rn such that rkA = n− 1, rkB = 1, and A ∩B = 0, are weakly complementary.

2.1 Lemma. Let R be a Hermite domain, and let A,B be pure submodules of Rn of ranks

r and n− r respectively. Then (A,B) is weakly complementary if and only if the H∗-class

(B : A) of End(Rn) contains a regular element that is a product of idempotents or rank r.

Proof: Suppose (A,B) is a weakly complementary pair. There are submodules

C1, . . . , Ck, D1, . . . , Dk ⊆ Rn

with A = C1, B = Dk, and all pairs (Ci, Di) and (Cj+1, Dj) are complementary. So
rkCi = r and rkDi = n − r, for all i. So each H∗-class (Di : Ci) contains an idempotent
εi ∈ D∗

r , and each H∗-class (Dj : Cj+1) contains an idempotent ηj ∈ D∗
r . For all j ≤ k− 1

we have εjRηjLεj+1, so by Lemma 1.7,

εj+1εj ∈ Rεj+1
∩ Lεj .

Let αi = εk · . . . · εi. Then αjRαj+1, and if xLεj+1, then xεjLεj . So by induction we have

αj ∈ Rεk ∩ Lεj

and, by Lemma 1.6, all αj are regular. Hence Kerαi = Ker εk = Dk and Imαi = Im εi =
Ci. So α1 is a regular element of (B : A) that is a product of idempotents of rank r.
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Conversely, let α be an element in the H∗-class (B : A) that is regular and a product
εk · . . . · ε1 of idempotents of rank r. Set Ci = Im εi and Di = Ker εi. Then A = C1,
B = Dk, and the pairs (Ci, Di) are complementary. By Lemma 1.3 εi+1εi is regular and
of rank r, so Im εi+1εi = Im εi. The submodules Ker εi+1 ⊆ Ker εi+1εi are also pure and
of the same rank, so Ker εi+1 = Ker εi+1εi. So εi+1Rεi+1εiLεi, and thus, by Lemma 1.7,
there is an idempotent

ηi ∈ Lεi+1
∩Rεi .

So the pairs (Ci+1, Di) are complementary. ⊣

2.2 Corollary. Let R be a Hermite domain. If each H∗-class contained in D∗
n−1 ⊆

End(Rn) contains a regular element that is a product of idempotents, then Rn is weakly

complementary.

Proof: If a ∈ D∗
n−1 is a product of idempotents, then it is a product of idempotents

of rank n− 1. ⊣

2.3 Lemma. Let R be a Hermite domain. If α = εk . . . ε1 is a product of idempotents of

End(Rn), and D is a direct summand such that both D and Dα have rank r, then there is

a product β = ηk . . . η1 of idempotents of rank r such that Kerβ ⊇ Kerα and dβ = dα for

all d ∈ D.

Proof: We complete the proof by induction on k. The case for k = 1 is easy, so
assume that k > 0, and that the result is true for k − 1. Let α′ = εk−1 . . . ε1, and let
d1, . . . ,dr be a basis for D. Then d1εk, . . . ,drεk generates a submodule of rank r with
pure closure D′, and D′α′ has rank r. By induction there is a product β′ = ηk−1 . . . η1 of
idempotents of rank r such that Kerβ′ ⊇ Kerα′ and d′β′ = d′α′ for all d′ ∈ D′. There
is a direct summand K ⊇ (Kerβ′)ε−1

k = Ker(εkβ
′) such that D′ ⊕ K = Rn. Choose for

ηk the projection on D′ with kernel K, and set β = ηkβ
′. So Kerβ ⊇ Kerα. For all x,

xηk = (x− xεk + xεk)ηk = xεkηk. So ηk = εkηk, and dβ = dα for all d ∈ D. ⊣

2.4 Lemma. Let R be a Hermite domain, and let α ∈ End(Rn) be of rank r ≤ n − 2.
Then α = βγ for some β, γ ∈ End(Rn) of rank r+ 1 such that γ is idempotent. If α is an

idempotent, then we can choose β to be idempotent too.

Proof: There is a basis {x1, . . . ,xn} of Rn such that {x1, . . . ,xr} is a basis of Imα.
The sequence 〈x1α, . . . ,xnα〉 generates Imα, so contains a subsequence Y of length r that
is linearly independent. Let j be such that xjα is not selected for the subsequence Y . If
α is idempotent, then we may assume Y to be the first r elements, and j = r + 1. Define
β by xjβ = xr+1, and xiβ = xiα for i 6= j. Define γ by xiγ = 0 if i ≥ r+3, xr+1γ = xjα,
and xiγ = xi for the remaining i. Clearly, β and γ have rank r + 1, α = βγ, and γ is an
idempotent such that Im γ is the pure submodule generated by {x1, . . . ,xr,xr+2}. If α is
idempotent, then so is β. ⊣

Lemma 2.4 implies that D∗
r generates K(n, r), for all r < n. Combining Lemmas 2.3

and 2.4, we get:

2.5 Corollary. Let R be a Hermite domain. Then 〈E〉 ∩K(n, r) = 〈En−r〉 for 1 ≤ r ≤
n− 1. In particular, 〈E〉 = 〈E1〉. ⊣
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2.6 Lemma. Let R be a Hermite domain, and let H∗
ε be the H∗-class of an idempotent ε

of rank r in End(Rn). If every H∗-class of D∗
r contains a regular element that is a product

of idempotents of rank r, then K(n, r) = 〈H∗
ε ∪ En−r〉.

Proof: Let α ∈ D∗
r . Then the H∗-classes L∗

ε∩R
∗
α and R∗

ε∩L
∗
α are contained in D∗

r , and
contain regular elements that are products of idempotents, say γ and δ. By Proposition
1.5 the map θ:H∗

ε → H∗
α, defined by βθ = γβδ, is a bijection. Since γ and δ are products

of idempotents of rank r, this implies that α ∈ 〈H∗
ε ∪En−r〉. So H∗

ε ∪En−r generates D∗
r ,

and thus K(n, r). ⊣

2.7 Lemma. Let R be a Hermite domain. Then for all n ≥ 2 and α ∈ End(Rn) of rank

1, if α is H∗-equivalent to an idempotent, then there are idempotents ε, η ∈ End(Rn) such
that α = εη.

Proof: Let n ≥ 2, and let α ∈ End(Rn) have rank 1. There is a basis y1, . . . ,yn−1,x

of Rn such that y1, . . . ,yn−1 is a basis of Kerα, and xα = ax for some a ∈ R. If a = 1,
then α is idempotent. In general, define ε, η ∈ End(Rn) by:

xε = x+ (a− 1)yn−1, and yiε = 0 for all yi.
xη = yn−1η = x, and yiη = 0 for all i < n− 1.

Then ε and η are idempotents, and εη = α. ⊣

2.8 Proposition. Let R be a Hermite domain. If for all m ≤ n every H∗-class in

D∗
m−1 ⊆ End(Rm) contains a regular element that is a product of idempotents of End(Rm),

then K(n, n− 1) = 〈En
1 〉.

Proof: By induction on n. The case for n = 2 follows from Lemmas 2.6 and 2.7.
Suppose, then, that n ≥ 3, and that the result is true for n − 1. Let x1, . . . ,xn−1,y be
a basis for Rn, and let A and B be the subspaces generated by x1, . . . ,xn−1 and y − x1

respectively. Then A ⊕ B = Rn, so the H∗-class (B : A) contains an idempotent. By
Lemma 2.6 it suffices to show that all elements in (B : A) are products of idempotents (of
rank n− 1). Let α ∈ (B : A). Then x1α = yα, and Imα is generated by the sequence of
linearly independent elements x1α, . . . ,xn−1α. Let β ∈ End(A) ∼= End(Rn−1) be defined
by x1β = x2α, and xiβ = xiα for all i ≥ 2. Then rkβ = n − 2, so, by induction,
β = ε1 · . . . · εk for some idempotents εi ∈ End(A) of rank n − 2. Extend each εi to an
idempotent ε′i ∈ End(Rn) of rank n− 1 by putting yε′i = y. Now define idempotents ϕ, η
of rank n − 1 by putting yϕ = x1ϕ = y, and xiϕ = xi for all i ≥ 2, and by putting
yη = x1α, and xiη = xi for all i. One easily verifies that α = ϕε′1 · . . . · ε′kη. So every
element of (B : A), hence every element of K(n, n−1), is a product of idempotents of rank
n− 1. ⊣

2.9 Theorem. The following conditions are equivalent for a Hermite domain R:

(1) K(m,m− 1) = 〈Em〉 for all m ≤ n;

(2) K(m,m− 1) = 〈Em
1 〉 for all m ≤ n;

(3) K(m, r) = 〈Em
m−r〉 for all m ≤ n and 1 ≤ r ≤ m− 1;

(4) For all m ≤ n, every H∗-class contained in D∗
m−1 ⊆ End(Rm) contains a regular

element that is a product of idempotents.

(5) For all m ≤ n the module Rm is weakly complementary, that is, all pairs of pure

submodules A,B ⊆ Rm such that rk A = m − 1, rk B = 1, and A ∩ B = 0, are
weakly complementary.

(6) Every invertible 2× 2 matrix over R is a product of elementary matrices.

(7) Every invertible matrix over R is a product of elementary matrices.
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Proof: The equivalence of (1), (2), and (3) follows from Corollary 2.5. Clearly, (2)
implies (4), and (5) follows from (4) by Corollary 2.2. Assume (5), and let

A =

(

p q

r s

)

be an invertible matrix. If one of the coefficients is invertible or equal to 0, then A is a
product of elementary matrices. So we may assume that p is nonzero and not invertible.
Then A = R(p, q) and B = R(0, 1) are pure submodules of R2 of rank 1 such that A∩B =
0. So there are vectors (c1,1, c1,2), . . . , (ck,1, ck,2) and (d1,1, d1,2), . . . , (dk,1, dk,2) such that
(p, q) = (c1,1, c1,2) and (0, 1) = (dk,1, dk,2), and

Ei =

(

ci,1 ci,2
di,1 di,2

)

and Fj =

(

cj+1,1 cj+1,2

dj,1 dj,2

)

are invertible matrices, for all 1 ≤ i ≤ k and 1 ≤ j ≤ k − 1. Set F0 = A. There are
matrices P1, . . . , Pk−1 and Q1, . . . , Qk−1 such that Ei = PiFi and Fj = QjEj+1 for all
1 ≤ i ≤ k − 1 and 0 ≤ j ≤ k − 1. All Pi and Qj , as well as Ek, have at least one 0 entry,
hence are products of elementary matrices. So A is a product of elementary matrices.

The equivalence of (6) and (7) follows from Proposition 1.1. Assume (7). We wish to
establish (2). Let m > 0, and let (B : A) be an H∗-class of D∗

m−1 ⊆ End(Rm). By Lemma
2.1 and Proposition 2.8 it suffices to show that A and B are weakly complementary. A and
B are pure submodules of Rn with bases a1, . . . ,an−1 and b respectively. We may assume
that b = (0, . . . , 0, 1). There is an invertible matrix M such that (a1, . . . ,an−1)

T forms
the upper (m − 1) × m submatrix of M . Then M is a product Ek . . . E1 of elementary
matrices. Let Mi = Ei . . . E1. Write Mi = (ci,1, . . . , ci,n−1,di)

T . Let Ci and Di be the
submodules generated by ci,1, . . . , ci,n−1 and di respectively. Then (Ci, Di) and (Cj+1, Dj)
are complementary pairs for all 0 < i < k and 0 ≤ j ≤ k − 1, and B = D0 and A = Ck.
So A and B are weakly complementary. ⊣

Examples of Hermite domains satisfying (6) include division rings and Euclidean do-
mains, so Theorem 2.9 generalizes [Fountain 1991]. Since (6) doesn’t depend on n, we may
conclude from Theorem 2.9 that if R is a Hermite domain such that K(2, 1) = 〈E2〉, then
K(n, n− 1) = 〈En〉 for all n ≥ 2.
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